Белорусский огород
Назад

Характеристика твердого и жидкого топлива

Опубликовано: 31.03.2020
Время на чтение: 13 мин
0
3

2. Классификация топлив и их краткая характеристика

Жидкое топливо производится преимущественно двумя способами: физическим и химическим. Первый протекает без нарушения структуры углеводородов, второй — с изменением ее. Физический способ, или прямая перегонка нефти, представляет собой процесс разделения ее на отдельные фракции, отличающиеся температурой кипения.

Для этого нефть нагревают в нефтеперегонных установках до температуры 300…380 °С, а образовавшиеся пары отбирают и конденсируют по частям в колоннах. В результате перегонки получают топливные дистилляты и остаток, называемый мазутом, который может быть использован для химической переработки или получения смазочных масел.

https://www.youtube.com/watch?v=ytcreatorsru

Легкокипящие фракции в паровой фазе достигают верха колонны и вместе с испарившимся оросителем отводятся из колонны в конденсатор — газоотделитель. Более тяжелые топливные фракции отводят из колонны через холодильники и отбирают дистилляты: бензиновый (40…200 °С), керосиновый (140…300 °С), газойлевый (230…330 °С), соляровый (280…380 °С) и в остатке — мазут.

Жидкие топлива подразделяются на:

  • карбюраторные (авиационные и автомобильные);
  • реактивные;
  • топлива для дизелей — дизельные топлива (зимние, летние, арктические), моторное топливо, соляровое масло;
  • котельные (мазут флотский, топочный мазут).

Карбюраторные топлива состоят из низко- и среднекипящих фракций нефти (фракции, выкипающие при температурах 35…200 °С) и легких продуктов вторичной переработки. В качестве топлив для карбюраторных двигателей используются также сжиженные углеводородные газы.

Топлива для авиационных карбюраторных двигателей представляют собой смесь бензиновых фракций каталитического крекинга и риформинга (фракции, выкипающие при температурах 40…180 °С), алкилата и других высокооктановых компонентов с добавкой антидетонационных и антиокислительных присадок. Выпускаются авиационные бензины марок Б-100/130, Б-95/130, Б-91/115 (в числителе — октановое число, в знаменателе — сортность на богатой смеси).

Реактивные топлива (авиационные керосины) получают, как правило, прямой перегонкой нефти (фракции, выкипающие при температурах 200…300 °С). Выпускаются топлива для летательных аппаратов с дозвуковой скоростью полета (Т-1, Т-2, ТС-1) и для сверхзвуковых самолетов (Т-6, Т-8).

В реактивном двигателе процесс сгорания топлива происходит иначе, чем в двигателях внутреннего сгорания. В реактивном двигателе топливо подается непрерывно, сгорание происходит в потоке воздуха, двигающегося со скоростью 135 м/с. Поэтому главными факторами для нормальной работы являются скорость и полнота сгорания топлива.

Таблица 7

Дизельные топлива, применяемые в двигателях с воспламенением от сжатия, подразделяются на три группы:

  • для быстроходных дизелей (ДЗ, ДЛ, ДС);
  • для автотракторных, судовых дизелей (А, С);
  • для среднеоборотных дизелей (ДТ, ДМ).

Дизельные топлива состоят из средних фракций нефти, перегоняющихся в пределах 180…350 °С, легких газойлей каталитического и термического крекинга и гидрокрекинга.

Твердое топливо – это горючие вещества, основной составной частью которых является углерод. К твердому топливу относят древесину, торф, горючие сланцы, каменный уголь и бурые угли.

Содержание углерода, водорода, кислорода, азота и серы, называемое химическим составом определяет свойства твердого топлива. При сжигании одинаковые количества различного топлива выделяют различные количества тепла. Тогда для оценки теплотворной способности топлив производят определение наибольшего количества теплоты, которое может быть выделено топливом при полном его сжигании в количестве 1 кг. Наибольшей калорийностью обладает каменный уголь.

Рис. 1. Некоторые типы твердого топлива

Как известно из курса теплотехники твердое органическое топливо часто применяют для получения теплоты и других видов энергии с последующим их преобразованием в механическую энергию. Помимо этого из твердых топлив при их соответствующей перегонке (обработке) можно получить более 300 различных химических соединений.

Характеристика твердого и жидкого топлива

Рис. 2. Дерево это твердое топливо

1. Виды топлив, их свойства и горение

По определению Д.И. Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».

Повышение мировых цен на традиционные источники энергии, политическая и экономическая нестабильность в странах, являющихся основными поставщиками нефти и газа на мировые рынки, заставляют ведущие страны искать другие виды источников энергии.

Эволюция конструкции двигателя внутреннего сгорания должна подчиняться современным требованиям норм охраны окружающей среды. Эти требования касаются как самих двигателей, так и применяемых в них топлив. Развитие топлив идет по следующим направлениям: совершенствование технологии переработки нефти; поиск новых добавок к топливам; применение альтернативных топлив.

Топливо должно отвечать следующим основным требованиям: при сгорании выделять возможно большее количество теплоты, сравнительно легко загораться, быть широко распространенным в природе, доступным для разработки, дешевым при использовании, сохранять свои свойства во время хранения. Очень важно, чтобы в процессе сгорания топлива не выделялись вещества, представляющие опасность для окружающей среды.

Характеристика твердого и жидкого топлива

Таблица 1. Общая классификация топлив

Агрегатное состояние Происхождение топлива
Естественное Искусственное
Жидкое Нефть Бензин, керосин, дизельное топливо, мазут, спирт, бензол, смолы (каменноугольная, торфяная, сланцевая) и др.
Газообразное Природный и нефтепромысловый газ Генераторный, водяной, светильный, коксовый, полукоксовый, доменный, нефтеперерабатывающих заводов и другие газы
Твердое Ископаемые угли, горючие сланцы, торф, дрова Каменноугольные кокс и полукокс, брикетированное и пылевидное топливо, древесный уголь и др.

Топливо состоит из горючей и негорючей частей. Горючая часть топлива представляет собой совокупность различных органических соединений, в которые входят углерод, водород, кислород, азот, сера. Негорючая часть (балласт) состоит из минеральных примесей, включающих золу и влагу.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Углерод С — основная горючая часть топлива, с увеличением его содержания тепловая ценность топлива повышается. Для различных топлив содержание углерода составляет от 50 до 97 %.

Водород Н является второй по значимости горючей составляющей топлива. Содержание водорода в топливе достигает 25 %. Однако при сгорании водорода выделяется в 4 раза больше теплоты, чем при сгорании углерода.

Кислород О, входящий в состав топлива, не горит и не выделяет теплоты, поэтому является внутренним балластом топлива. Его содержание в зависимости от вида топлива колеблется в широких пределах: от 0,5 до 43 %.

Азот N не горит и так же, как кислород, является внутренним балластом топлива. Содержание его в жидком и твердом видах топлива невелико и составляет 0,5…1,5 %.

Сера S, при сгорании которой выделяется определенное количество теплоты, является весьма нежелательной составной частью топлива, так как продукты ее сгорания — сернистый SO2 и серный SО3 ангидриды — вызывают сильную газовую или жидкостную коррозию металлических поверхностей. Содержание серы в твердом топливе достигает 8 %, в нефти — от 0,1 до 4 %.

Зола А представляет собой негорючий твердый компонент, количество которого определяют после полного сгорания топлива. Она является нежелательной и даже вредной примесью, так как в ее присутствии усиливаются абразивные износы, усложняется эксплуатация котельных установок и т.д. Топливо с высоким содержанием золы имеет низкую теплоту сгорания и воспламенения.

Влага W является весьма нежелательной примесью, так как, отбирая часть теплоты на испарение, снижает теплоту и температуру сгорания топлива, усложняет эксплуатацию установок (особенно в зимнее время), способствует коррозии и т.д.

Примеси (золу и влагу) принято подразделять на внешние и внутренние. Первые попадают в топливо из окружающей среды при его добыче, транспортировке или хранении, а вторые входят в его химический состав.

Топливо, которое поступает к потребителю в естественном состоянии и содержит, кроме горючей части, золу и влагу, называется рабочим. Для определения сухой массы топлива его высушивают при температуре 105 °С для удаления влаги.

Состав газообразных топлив весьма разнообразен. Горючая часть его включает водород Н, окись углерода СО, метан СН4 и другие газообразные углеводороды (CnHm) с числом углеводородных атомов до 4 включительно.

Тепловую ценность газообразного топлива представляют метан и более тяжелые углеводороды. Окись углерода при сгорании выделяет незначительное количество тепла. Балластную часть газообразных топлив составляют негорючие газы, такие как азот N, углекислый СО3 и сернистый SО2, кислород О и пары воды Н2O.

Для газообразных топлив применяется объемная теплота сгорания — количество теплоты, выделяемой при полном сгорании единицы объема (кДж/м3). Газообразное топливо оценивают также по молярной теплоте сгорания, т.е. по количеству теплоты, выделяемой при полном сгорании одного моля газа (кДж/моль).

Предлагаем ознакомиться  Кедр: описание дерева и применение

Теплоту сгорания жидкого и твердого топлива вычисляют по формуле Д.И. Менделеева. Высшее удельное количество теплоты сгорания определяют по формуле

Низшее (рабочее) удельное количество теплоты сгорания топлива определяют по формуле

В формулах (1) и (2) содержание химических элементов выражается в процентах.

https://www.youtube.com/watch?v=ytpolicyandsafetyru

Низшая, или рабочая, теплота сгорания Qн — это теплота сгорания, получаемая в практических условиях. Вычитаемое 25(9H W) в формуле (2) представляет собой удельное количество теплоты, которое затрачивается на превращение в пар влаги, выделяющейся при сгорании топлива. Пар уносится с продуктами сгорания в атмосферу (9Н — число массовых частей воды, образующихся при сгорании одной массовой части водорода; Н, W — содержание в топливе соответственно водорода и воды, %).

В выражении (2) принято, что дымовые газы охлаждаются до  20 °С, оставаясь в газо- и парообразном состояниях. Значит, 1 кг пара при выносе в атмосферу будет забирать 2671 – (100 – 20) × 2,0096 = 2512 кДж/кг, где 2671 кДж/кг — количество теплоты, затрачиваемой на испарение 1 кг воды, (100 – 20) — условный перепад температуры паров воды, °С; 2,0096 кДж/(кг · град) — теплоемкость паров воды.

В автотрактротных двигателях продукты сгорания отводят из цилиндров при температурах, значительно более высоких, чем температура конденсации паров воды. Поэтому рабочей теплотой сгорания бензинов и других жидких топлив считают величину Qн. Количество теплоты, выделяемое при сгорании топлива, зависит от химического состава, а следовательно, от содержания в нем углерода и водорода.

Наибольшая массовая теплота сгорания водорода составляет 121 100 кДж/кг, углерода — 34 100 кДж/кг, поэтому парафиновые углеводороды с большим содержанием водорода имеют большую массовую теплоту сгорания по сравнению с ароматическими, содержащими меньше водорода. Объемная же теплота сгорания меньше у парафиновых углеводородов и больше у нафтеновых и ароматических, так как у них выше плотность.

Теплоту сгорания нефтепродуктов (кДж/кг) с достаточной степенью точности можно определить по формуле

где К — коэффициент, зависящий от плотности нефтепродукта при 20 °С и определяемый по справочной таблице; 20 — относительная плотность нефтепродукта при 20 °С.

Основной характеристикой газообразных топлив является объемная теплота сгорания (кДж/м3), которая определяется делением молярного количества теплоты сгорания на объем 1 киломоля газа. 1 киломоль любого газа при нормальных условиях (0 °С и 760 мм рт. ст.) занимает объем 22,4 м3.

Высшее объемное количество теплоты сгорания газообразного топлива в расчете на сухую массу может быть определено по формуле

а ее низшее объемное количество —

Объемное количество теплоты сгорания рабочей массы газообразного топлива, содержащего водяные пары, вычисляют по формулам

Характеристика твердого и жидкого топлива

где 0,805 — масса 1 м3 водяного пара, кг; W — содержание влаги в 1 м3 газа, кг.

Теплоту сгорания определяют также опытным путем, сжигая определенное количество топлива в специальных приборах (калориметрах). Теплоту сгорания оценивают по повышению температуры воды в калориметре.

Для сравнения топлив введено понятие «условное топливо». За единицу такого топлива принято топливо, которое при полном сгорании 1 кг или 1 м3 выделяет 29307,6 кДж. Чтобы перевести любое топливо в условное и потом сравнить его с другими, нужно теплоту сгорания данного топлива разделить на теплоту сгорания условного топлива.

Таблица 1

Теплота сгорания и калорийные эквиваленты различных видов топлива

Вид топлива Теплота сгорания, Дж/кг Калорийный эквивалент
Условное топливо (донецкий каменный уголь) 29 307 1,00
Антрацит 30 230 1,03
Бурый уголь 14 235 0,49
Торф 13 440 0,46
Дрова 12 560 0,43
Нефть 41 867 1,42
Мазут 41 448 1,40
Бензин автомобильный 43 960 1,50
Дизельное топливо 42 500 1,45
Керосин 42 900 1,46

3. Бурый уголь или лигнит

Рис 8

Каменный уголь – это уголь с высокой степенью обугливания и высшей теплотворной способностью более 24 МДж/кг (5700 ккал/кг) на беззольной, но влажной основе и с коэффициентом отражения витринита 0,5 и более.

Рис. 3. Каменный уголь

К каменному углю относят не осажденный шлам, не классифицированные. Образование каменных углей в основном протекало в палеозое, преимущественно в каменноугольном периоде, а это более 300 миллионов лет тому назад.

Как и древесина, химический состав каменного угля представлен смесью углерода, водорода, кислорода, азота, серы, а также воды и летучих веществ с небольшими количествами минеральных примесей. Минеральные примеси не подвержены горению и при сжигании угля образуют золу. Каждый из добываемых углей отличается соотношением слагающих их компонентов, что влияет и на их теплотворную способность. Ряд органических соединений, входящих в состав каменного угля, обладает канцерогенными свойствами.

Рис. 4. Расколотый кусок каменного угля

Для образования угля необходимо обильное накопление растительной массы. Начиная с девонского периода в торфяных болотах, накапливалось органическое вещество, из которого без доступа кислорода формировались ископаемые угли. Большинство промышленных месторождений ископаемого угля относится к девонскому периоду, хотя существуют и более молодые месторождения. Возраст самых древних углей оценивается примерно в 350 миллионов лет.

Каменный уголь к первым ископаемым топливам которые начали широко применяться человеком. Применение каменного угля в промышленности для получения энергии позволило сделать большой шаг вперед. Данный уголь формировался как осадочная порода, за счет естественного разложения древних растений. Каменный уголь состоит из огромного количества углерода.

https://www.youtube.com/watch?v=ytdevru

Содержание углерода в несколько раз выше по сравнению с бурыми углями. Кроме того в каменном угле содержатся летучие вещества с низким содержанием золы. Наиболее эффективным альтернативным видом переработки каменного угля является его газификация. В ходе газификации из угля получают оксид углерода и водород, затем с помощью каталитических реакций получают жидкое топливо.

Промышленным способом из каменного угля извлекают серу, цинк, германий, свинец, ванадий. В производстве керамики, строительных материалов, абразивов применяется отходы добычи и переработки углей, а также зола, оставшаяся после их сжигания. Чтобы использование угля носило рациональный характер, из него удаляют минеральные примеси, то есть, производится обогащение угля.

Кокс и уголь используется в металлургии в процессе выплавки железа. Кроме этого, каменный уголь используется и в металлургии, при производстве стали и чугуна. Каменный уголь имеет наибольшую стоимость за тонну готовой продукции. Связанно это в первую очередь с его калорийностью и малой зольностью. Также каменные угли довольно часто применяют для отопления домов.

Мы видим, что каменный уголь применяют практически во всех сферах жизнедеятельности. Данное обстоятельство говорит о том, что добыча каменного угля будет продолжаться еще долгое время.

На счет перспектив развития промышленности по добыче каменного угля во всем мире не так однозначны. Нет также и одной выбранной всеми странами доктрины по переработке каменных углей. Стратегии по добыче и переработке углей разрабатываются и принимаются каждой страной в отдельности и зависят от условий, уровня рентабельности разработки угольных месторождений, геологических запасов, экологических ограничений, места и роли угля в топливно-энергетическом балансе, степени интеграции экономики страны в региональные и мировые структуры и прочее.

Рис. 5. Добыча каменного угля

В ряде стран благодаря благоприятным геологическим условиям эксплуатации месторождений угольная промышленность является высокорентабельной отраслью и служит важным источником доходов государственных бюджетов. Речь идет о таких странах, как США, Австралия, ЮАР, Канада, Индонезия, Колумбия. Вместе с тем есть немало стран, где развитая в прошлом угледобывающая отрасль под давлением конкуренции признана экономически целесообразной, в результате чего добыча угля прекращена, несмотря на значительный рост зависимости большинства из этих стран от внешних поставок энергоресурсов. Так произошло в Бельгии, Голландии, Ирландии, Португалии, Франции, Японии.

Предлагаем ознакомиться  Цикламен уход дома

Бурый уголь или лигнит – это уголь с низкой степенью обугливания, сохранивший анатомическую структуру растительного вещества, из которого он образовался. Данный уголь имеет высшую теплотворную способность менее 24 МДж/кг (5700 ккал/кг) на беззольной, влажной основе. Его коэффициент отражения витринита менее 0,5.

Суббитоминозный уголь, или бурый уголь – горючее полезное ископаемое, ископаемый уголь 2-й стадии метаморфизма (переходное звено между лигнитом и каменным углем), получается из лигнита или напрямую из торфа.

Рис. 6. Десятитонный кусок бурого угля в Музее бурого угля в Японии

Классификация ископаемых углей довольно запутана, например, в Англии и Евросоюзе используют термин лигнит (которой считается синонимом бурого угля), а в Америке понятия бурый уголь и лигнит выделяются отдельно и очень четко. На территории России синонимом бурого угля является такое понятие как лигнит.

Рис. 7. Наиболее типичный внешний вид бурого угля

Использование бурого угля в России и многих других странах для большой энергетики в качестве топлива значительно уступает использованию каменного угля. Однако низкая стоимость делает его привлекательным для сжигания в мелких и частных котельных, где доля его использования в среднем составляет до 80 %.

Сжигание бурого угля осуществляется в пылевидном (при хранении бурый уголь высыхает и рассыпается) и кусковом видах в слое. Основным энергетическим топливом на тепловых электростанциях Греции и особенно Германии бурый уголь используется для выработки электроэнергии. Так в Греции на таких станциях вырабатывается до 50 % электроэнергии, 24,6 % – в Германии.

Рис 9

Набирает обороты и производство жидких углеводородных топлив из бурого угля посредством перегонки. После перегонки остаток годится для получения сажи. Из него извлекают горючий газ, получают углещелочные реагенты и монтан-воск (горный воск). В небольших количества монтан-воск применяют для изготовления поделок.

Если говорить о стабильности рынка в отношении энергетических углей, то он достаточно стабилен. В связи с чем увеличения объема продаж бурого вряд ли ожидаются. Наряду со стабильной ситуацией в энергетике возник недостаток металлургических топлив и коксовой продукции. И поэтому сейчас многие ресурсы направлены на выработку технологий по переработке бурых углей в готовый продукт для нужд металлургиии. Такая переработка в перспективе будет экономически обоснована, потому как стоимость коксовой продукции в несколько раз дороже рядового угля.

Рис. 8. Установка, генерирующая электричество из бурого угля

В мире карбонизацией бурых углей уже долгие годы занимаются два предприятия: комбинат «Райнбраунколе» мощностью 210 тыс. т/год кокса в Германии и компания

«Австралиан чар» мощностью 80 тыс. т/год. Разработанные в 30-е годы прошлого столетия и затем усовершенствованные технологии фирмой «Лурги», отличаются чрезвычайно высокой капиталоемкостью. Данные аспект делает недоступным покупку импортных технологий и оборудования.

В России данной тематикой занимается достаточно большое число научных коллективов, имеются и технологические разработки на тему термического облагораживания бурого угля. Но в большинстве случаев данные исследования выполняются только на уровне лабораторных

установок. Известно, что путь от лабораторной установки до коммерческого предприятия с надежной технологией проходят только 5 % от всех разработок. Обусловлено это большими инвестициями и большим сроком апробации, отдача от которых вернется очень нескоро.

4. Торф

Торф (нем. Torf) – это горючее полезное ископаемое; образовано скоплением остатков мхов, подвергшихся неполному разложению в условиях болот. Для болота характерно отложение на поверхности почвы неполно разложившегося органического вещества, превращающегося в дальнейшем в торф. Слой торфа в болотах не менее 30 см, (если меньше, то это заболоченные земли).

Рис. 9. Торфяной среднеразложившийся горизонт дерново- подзолистой грунтово-оглеенной почвы

Торф отличается от почвенных образований содержанием органических соединений, их количество в торфе составляет не менее 50 % по отношению к абсолютно сухой массе. В 30-50 гг. прошлого столетия торф активно применяли в энергетике и для выработки газа, а также для отопления домов.

Применение торфа как топлива обусловлено его составом: большим содержанием углерода, малым содержанием серы, вредных негорючих остатков и примесей. По сути, это молодой уголь.

Основными недостатками торфа является низкая теплотворная способность, а также трудность его сжигания, что обусловлено большим содержанием влаги (до 65%).

Преимуществами торфяного топлива являются:

  • экологическая чистота сгорания (малая доля серы);
  • полное горение (малый остаток золы);
  • низкая себестоимость производства;
  • появившиеся новые технологии сжигания.

Рис. 10. Торф в руке

В ходе маркетингового исследования «Российский рынок органических удобрений: итоги 2011 г., прогноз 2012-2013 гг.», проведенного NeoAnalytics выяснилось, что производство торфа для сельского хозяйства ожидают большие перспективы. Это можно характеризовать тем, что торфяная промышленность пришла в упадок.

Так в период с 1990 по 2011 год добычи торфа сократились более чем в 20 раз, большинство предприятий, связанных с добычей и переработкой торфа, прекратили деятельность, на других, действующих в настоящее время предприятиях, оборудование физически и морально устарело. Разрабатываемые ранее залежи торфа зарастают, что удорожает добычу торфа, или возвращены в гослесфонд как не используемые.

Рис. 11. Свойства и области применения торфа

Рис. 12. Добыча торфа

Если сравнивать показатели добычи торфа, то легко заметить ее снижение. Так в 2011 году было произведено 128 тыс. тонн торфа для сельского хозяйства, что почти в 30 раз меньше добычи в 1998 году (3834 тыс. тонн). Запасы торфа по экономическим районам России распределены следующим образом: более половины запасов (51%) торфа расположено в Западно-Сибирском районе, затем на втором месте идет – Северный регион (18%), на третьем месте – Дальневосточный (13%). Наименьшие запасы торфа находится в Центральном экономическом районе, порядка 2 %.

Торф относят к возобновляемым природным ресурсам.

Используют его в основном в энергетике и сельском хозяйстве.

Таблица 8

Более 65 % добываемого торфа поставляется для нужд сельского хозяйства. В целом торфяные ресурсы в мировом масштабе оцениваются более 400 млн. гектаров. Из них 162,7 млрд. тонн при влажности в 40 % расположены на территории Российской Федерации.

Рис. 13. Торф в сельском хозяйстве

5. Брикетное топливо

Брикетное топливо – это еще одно назначение каменноугольных брикетов. Брикетирование происходит путем спекания угольных или торфяных частиц, под действием температуры и давления, в брикеты правильной формы. Для лучшей спекаемости угольных частиц в угольные брикеты при их производстве добавляют связующие.

Торфяные брикеты – это готовый к сжиганию продукт, изготавливаемый из сырого торфа с добавлением связующих веществ или без них, последующей сушкой и обработкой высоким давлением.

Рис. 14. Торфяные топливные брикеты

Буроугольные брикеты – изготавливают из бурого угля и лигнита. Их спекание производят под высоким давлением без добавления связующих веществ после предварительного дробления и сушки с образованием брикетов правильной формы.

6. Кокс

Кокс – это твердый остаток, получаемый путем сухой перегонки каменного угля или лигнита при полном отсутствии доступа воздуха (карбонизация).

Различают каменноугольный, буроугольный и газовый кокс.

Кокс каменноугольный (от нем. Koks и англ. coke) – это твѐрдый пористый продукт серого цвета, получаемый путѐм коксования каменного угля при температурах 950-1100 °С без доступа воздуха. Кокс содержит 96-98 % С, остальное Н, S, N, O. Пористость 49-53 %, истинная плотность 1,80-1,95 г/см³, кажущаяся плотность ≈ 1 г/см³, насыпная масса 400-500 кг/м³, зольность 9-12 %, выход летучих веществ 1 %.

Рис. 15. Кокс каменноугольный

Для выплавки чугуна в основном применяют каменноугольный кокс как высококачественное бездымное топливо или по-другому доменный кокс, также его применяют как восстановитель железной руды и разрыхлитель шихтовых материалов. Также каменноугольный кокс используют как ваграночное топливо в литейном производстве (литейный кокс), для бытовых целей (бытовой кокс), в химической и ферросплавной отраслях промышленности (специальные виды кокса).

Предлагаем ознакомиться  7 полезных свойств ежевики для организма человека с опорой на науку

Доменный кокс выпускают с размером кусков не менее 25- 40 мм, наличие мелочи должно составлять не более 3% (куски до 25 мм и не более 2-3 % для кусков больше 80 мм.

Литейный кокс, если рассматривать его по размерам кусков, то окажется что он крупнее доменного. Он также более пригоден как продукт, в котором присутствуют куски менее 60-80 мм. Главное чем отличается литейный кокс от доменного является то, что в нем содержится очень мало серы, менее 1 % против 2 % в доменном коксе.

При производстве ферросплавов активно применяют кокс мелких фракций порядка 10-25 мм. Применяемые коксы обладают высокой степенью реакционной способности. Если говорить о прочности кокса то эти требования менее строгие, чем, например, к доменному или литейному коксу.

Таблица 9

Рис. 16. Доменный процесс

Наиболее лучшим коксом для любого типа производства является прочный, малозольный кокс с низким содержанием серы и малым количеством мелких фракций.

В современном мире производство каменноугольного кокса составляет около 550-650 млн. т/год. Больше половины от этого объема производится в КНР (60-70 % мирового производства).

6.2 Газовый кокс

Газовый кокс – это побочный продукт переработки угля, используемого для производства искусственного газа на газовых заводах, и печной кокс, к которому относятся все другие виды кокса, получаемые из каменного угля.

Буроугольный кокс – это твердый продукт, получаемый путем карбонизации буроугольных брикетов.

Рис. 17. Частицы угля в буроугольном коксе

Сегодня основными потребителями буроугольных коксов являются черная и цветная металлургия. Здесь его используют в качестве восстановителя или технологического топлива для агломерации, и изготовления ферросплавов, в качестве отощающей добавки в производстве металлургического кокса и основного наполнителя при изготовлении коксобрикетов.

7. Горючий сланец

https://www.youtube.com/watch?v=ytcopyrightru

Горючий сланец – это осадочная порода с высоким содержанием органического вещества (керогена), которое может быть преобразовано в сырую нефть или газ путем нагревания.

Горючий сланец полезное ископаемое из группы твердых каустобиолитов, дающее при сухой перегонке значительное количество смолы (близкой по составу к нефти). Образование сланцев в основном происходило 450 миллионов лет тому назад на дне моря из растительных и животных остатков.

Горючий сланец состоит из преобладающих минеральных (каолинит, кальцит, монтмориллонит, кварц, полевые шпаты, доломит, гидрослюды, пирит и др.) и органических частей (кероген), последняя составляет 10-30 % от массы породы и только в сланцах самого высокого качества достигает 50-70 %. Органическая часть является био- и геохимически преобразованным веществом простейших водорослей, сохранившим клеточное строение (талломоальгинит) или потерявшим его (коллоальгинит); в виде примеси в органической части присутствуют измененные остатки высших растений (витринит, фюзенит, липоидинит).

Рис. 18. Кукерсит (горючий сланец).

Горючие сланцы – это порода смешанного обломочного и органогенного происхождения; образуются на дне морей, лагун, озер при одновременном осаждении глинистых частиц, карбонатного вещества и сапропелевого ила с органическими остатками (планктон, высшие растения) в условиях ограниченной циркуляции воды и воздуха. Скопившаяся органическо- минеральная масса постепенно уплотняется и преобразуется в плотную осадочную породу.

Горючие сланцы зарекомендовали себя в первую очередь как очень ценное энергетическое сырье. Их применяют и в качестве топлива, а также в различных отраслях: химической промышленности, сельском хозяйстве и дорожном строительстве, в энергетике, при производстве строительных материалов. Особую ценность представляет сланцевая смола.

Данные породы делятся, в частности, на горючие, глинистые и кристаллические. Ежедневный спектр применения сланцев весьма велик. Например, сланцевые породы используют для производства огнестойкого сырья, в строительстве для внешней отделки, к этой же породе относится и известная всем черепица.

Сланцевый газ, добывают из пород, залегающих на большой глубине. В основном такой газ храниться в сланцах, которые имеют пористую структуру. Содержание газа в сланцах небольшое и храниться он там мелкими в промышленном понимании порциями. Таким образом, при выкачивании газа из сланцевых пород в него попадает множество примесей.

Сегодня содержание метана в добываемом газе варьируется от 30 до 70 %. Это обстоятельство говорит о необходимости в и без того сложном процессе добычи газа производить очистку газа. Поэтому для добычи недорогого, но при этом чистого газа стремятся разрабатывать залежи газа по форме напоминающих пузыри.

По данным международного энергетического агентства IEA и независимой консалтинговой компании в области энергетики ARI на июнь 2013 крупнейшие запасы сланцевого газа находятся в США – около 32,875 миллиардов кубометров. На втором месте находится Китай – там по оценкам экспертов сконцентрировано 31,573 миллиардов кубометров.

9

Рис. 19. Схема добычи сланцевого газа

Сегодня добычу сланцевого газа запретили в ряде стран Европы путем введения моратория. Обусловлено это заботой об окружающей среде. Россия так же заявила, что не собирается начинать освоение сланцевого газа в ближайшие десятилетия. США наоборот уже несколько дет ведет добычу сланцевого газа. Мировые запасы сланцевого газа на сегодняшний день оцениваются как 220,729 миллиардов кубометров.

8. Битуминозные пески

Битуминозные пески – это пески или песчаники (битумы) с высоким содержанием смолистых углеродов, способные выделять нефть при нагревании или других процессах извлечения.

К битуминозным пескам относят и другие виды сырой нефти, а также густых вязких нефтяных продуктов с большой плотностью и вязкостью. Данные битумы или правильнее битуминозные пески не могут быть добыты традиционным способом добычи нефти, т. е. путем естественного фонтанирования или откачки. Причина этого кроется как раз в их плотности и вязкости.

Тяжелые виды сырой нефти также относят к категории твердых топлив. Параметром, разграничивающим сырую нефть и битумы, является показатель их вязкости. Если говорит о разграничении сверхтяжелой сырой нефти, тяжелой сырой нефти и другими видами нефти необходимо оценивают их плотность.

Рис. 20. Фото битуминозных песков

Нефтяные пески Венесуэлы и Канады содержат большие запасы нефти около 3400 млрд. баррелей. Разработка данных залежей производится в основном карьерным или шахтным способом. Сегодня такие ведущие компании как Shell и BP до сих пор не способны предложить технологию, которая позволила бы добывать большие объемы нефти из нефтяных песков. Однако это не останавливает их в поисках и они до сих пор продолжают свои исследования.

Запасы нефти в битуминозных песках Альберты (Канада) и в Ориноко (Венесуэла) составляют соответственно 1,7 и 2,0 трлн. баррелей, в то время как мировые запасы обычной нефти на начало 2006 года оценивались в 1,1 трлн. баррелей. Добыча нефти в 2006 из битуминозных песков Альберты составила 1,126 Мб/д (млн.

баррелей в день). Добыча нефти из битуминозных песков Ориноко составляет 0,5 Мб/д. Вся мировая добыча нефти составляет около 84 Мб/д. Таким образом, хотя запасы битуминозных песков огромны, добыча нефти из них в обозримом будущем (согласно нынешним прогнозам) будет удовлетворять всего несколько процентов от мировых потребностей нефти. Проблема в том, что нынешние технологии добычи нефти из битуминозных песков требуют большого количества пресной воды.

8. Битуминозные пески

Битумы – это вещества имеющие вязкости, превышающие 10000 сантипуаз.

Рис. 21. Битум

Различные виды сырой нефти имеют вязкости меньше или равные 10000 сантипуаз. Эти величины вязкости относятся к измерениям, выполненным при отсутствии газа и первоначальной температуре нефтяного пласта.

Рис 11

Битумы нерастворимы в воде, полностью или частично растворимы в бензоле, хлороформе, сероуглероде и др. органических растворителях; плотностью 0,95-1,50 г/см³.

, , ,
Поделиться
Похожие записи
Комментарии:
Комментариев еще нет. Будь первым!
Имя
Укажите своё имя и фамилию
E-mail
Без СПАМа, обещаем
Текст сообщения
Adblock detector