Белорусский огород
Назад

Тросовая молниезащита

Опубликовано: 21.04.2020
Время на чтение: 48 мин
0
3

СОДЕРЖАНИЕ

1. Общие положения

2. Требования к выполнению молниезащиты зданий и сооружений

https://www.youtube.com/watch?v=edit

Молниезащита I категории

Молниезащита II категории

Тросовая молниезащита

Молниезащита III категории

3. Конструкции молниеотводов

Приложение 1. Основные термины

Приложение 2. Характеристики интенсивности грозовой деятельности и грозопоражаемости зданий и сооружений

Приложение 3. Зоны защиты молниеотводов

Приложение 4. Пособие к "Инструкции по устройству молниезащиты зданий и сооружений" (РД 34.21.122-87)

1. Краткие сведения о разрядах молнии и их параметрах

2. Характеристики грозовой деятельности

https://www.youtube.com/watch?v=upload

3. Количество поражений молнией наземных сооружений

4. Опасные воздействия молнии

5. Классификация защищаемых объектов

6. Средства и способы молниезащиты

7. Защитное действие и зоны защиты молниеотводов

8. Подход к нормированию заземлителей молниезащиты

9. Примеры исполнения молниезащиты различных объектов

Грозозащита — обязательное условие безопасности

В регионах со сложной климатической обстановкой, где часты наземные разряды молний, системы грозозащиты становятся обязательным условием безопасности.

В России ежегодно приходится 6–10 ударов молнии на км2. И хотя большинство регионов можно условно считать грозобезопасными, ущерб от потенциально возможного удара никак не сравним с затратами на элементарные защитные устройства.

Наибольшему риску подвержены здания, возвышающиеся над окружающей местностью. Наличие защиты от молний, безусловно, обязательно для зданий высотой свыше 20 м, объектов с повышенной степенью взрывоопасности, таких как АГЗС и котельные, складов с легковоспламеняющимися материалами. Прочие объекты требуют индивидуального подхода в организации грозозащиты.

Молниеотвод — это устройство, которое служит для защиты зданий и сооружений от ударов молний. Как правило, состоит из молниеприемника (молниеотвода), проводника токоотвода и заземляющего контура. В народе это устройство часто называется громоотвод.

В широком понимании молниезащитное устройство — это проводник, возвышающийся над защищаемым объектом или территорией. Его задача — принять удар молнии на себя и провести её к земле, где она будет распределена по грунту через контур заземления.

Тросовая молниезащита

Использование стержневого молниеотвода: 1 — молниеотвод; 2 — защищенная зона; 3 — токоотвод; 4 — контур заземления

 Стержневой молниеотвод защищает не только территорию непосредственно под собой, но и ареал определённых размеров вокруг себя. Защитная зона имеет форму конуса с вершиной на 85% высоты молниеотвода. Радиус основания имеет отношение к высоте конуса 1:1,73.

Если молниеотвод устанавливается на углу здания с удалением противоположного угла 5 м и высотой 3 м, высота шпиля составит примерно 8,7 м плюс высота самого здания. Так же рассчитывается защитная зона тросового молниеотвода, натянутого горизонтально. Однако в этом случае безопасное пространство определяется треугольником, высота которого составляет 85% расстояния от земли до нижней точки провиса троса. Ширина защитной зоны относится к высоте подвески троса как 1:1,67.

Сечение молниеотвода и токоотводов для систем молниезащиты высотой до 50 м должно быть не меньше 80 мм2. Основными материалами в изготовлении элементов системы являются:

  • Оцинкованная труба диаметром от 25 мм.
  • Гладкая арматура от 12 мм.
  • Стальная полоса 40х4 мм.
  • Стальной трос толщиной от 14 мм.

Помимо проводимости проводников существует также требование высокой устойчивости к ветровым нагрузкам. По этой причине шпили молниеотводов выполняют секционными с последовательным расширением трубы в нижних ярусах, а тросовые растяжки на коньках крыш обеспечивают промежуточным креплением.

Существует несколько вариантов изготовления молниезащитного шпиля и несколько способов его устойчивого крепления. Наиболее распространены шпили, крепящиеся к фронтонам, стенам и углам зданий, также находят применение и отдельно стоящие молниеотводы.

Для облегчения установки только верхний ярус шпиля изготавливают из полнотелого материала, нижние расширяющиеся ярусы выполняют из трубы. Длина яруса определяется устойчивостью материала к изгибу под действием ураганного ветра. В среднем ограничения на длину сегмента для разных материалов таковы:

  • Труба 25 мм — не более 5,5 м.
  • Труба 32 мм — не более 8 м.
  • Труба 40 мм — не более 11,5 м.

https://www.youtube.com/watch?v=ytadvertiseru

При этом длина незакреплённого конца шпиля не может быть больше 14 м вне зависимости от материала изготовления. Для поддержания высоких молниеотводов может использоваться система растяжек из трёх тросов толщиной от 3,5 мм, которые растянуты и закреплены к шпилю ниже функциональной высоты молниеотвода (менее 85% общей длины) и костылям из угловой стали, вбитым в грунт.

Сегменты молниеотвода соединяют фланцами на болтах. Толщина резьбовой части и количество болтов должны выбираться, исходя из принципа, что общее сечение соединительных элементов не может быть меньше 1,4 сечения профиля трубы. Возможно также соединение сваркой с наложением укрепляющего бандажа из стальной полосы.

Если молниеотвод установлен на прочном основании (стяжка, тротуарная плитка, асфальт), для крепления основания достаточно забить в грунт под покрытием трубу диаметром меньше основания молниеотвода на глубину не менее 15% высоты шпиля.

Над землёй оставляют 50–70 см трубы, на неё надевают молниеотвод с приваренными к торцу опорными элементами. Если молниеотвод устанавливается на голый грунт, требуется заливка бетонной тумбы на глубину не менее 5–7% высоты молниеотвода и массой не менее 35 кг на каждый метр высоты шпиля.

Устройство тросовой молниезащиты

Для больших зданий тросовая защита более привлекательна, чем стержневой молниеотвод. Она представлена в виде двух прочных стоек, закреплённых к фронтонам крыши и выступающих над коньком на достаточную высоту, чтобы профиль крыши помещался в защитную зону. Между стойками натягивается трос толщиной:

  • 12 мм при длине до 20 м.
  • 14 мм при длине до 35 м.
  • 16 мм при длине до 50 м.

Для максимального натяжения стойки должны иметь подкосы, жёстко закреплённые к коньку, а на тросе обязательно наличие винтовых стяжек. Нежелательно наличие пролётов троса свыше 15 м, поэтому рекомендуется установить дополнительные опоры с проволочным кольцом на конце, в которое пропущен трос.

Если нет возможности надёжно закрепить крайние стойки, концы троса спускают с крыши и крепят к стационарным конструкциям. Таким образом, стойки на крыше испытывают только осевую нагрузку.

Вместо троса может быть использована стальная оцинкованная проволока, этот вариант более приемлем с экономической точки зрения и используется в контурной тросовой молниезащите. Конструкция состоит из проволоки, натянутой на небольшой высоте (не менее 35–40 см) по линиям фронтонных свесов, коньку, ендовам и карнизам.

https://www.youtube.com/watch?v=ytcopyrightru

Элементы тросовой защиты соединяют между собой сваркой, сечение шва как минимум втрое выше номинального сечения токопроводящих частей. Тросы соединяют со стойками и токоотводами болтовыми зажимами в количестве 2-х штук на одно место соединения. Наращивание троса возможно только методом счаливания с длиной перехлеста не мене 1,5 м.

Для растекания тока по грунту используют глубинный контур заземления, соединённый с системой грозозащиты токоотводом. Обычно это стальная полоса 40х4 мм или проволока горячего катания 14 мм. Важно, чтобы сопротивление между крайней точкой системы грозозащиты и точкой входа в землю не превышало 2–4 Ом.

Система заземления представлена тремя электродами из угловой стали с полкой 50 мм, вогнанных в землю не менее чем на 2,5 метра и с удалением друг от друга не менее 2 метров. Электроды погружают ударным методом, хвосты обваривают стальной полосой 40х4 мм. Обычно хвосты и обвязку прячут в траншее глубиной 30–40 см.

ПРЕДИСЛОВИЕ

Требования настоящей Инструкции обязательны для выполнения всеми министерствами и ведомствами.

Инструкция устанавливает необходимый комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей (сельскохозяйственных животных), предохранения зданий, сооружений, оборудования и материалов от взрывов, пожаров и разрушений, возможных при воздействиях молнии.

Инструкция должна соблюдаться при разработке проектов зданий и сооружений.

Инструкция не распространяется на проектирование и устройство молниезащиты линий электропередачи, электрической части электростанций и подстанций, контактных сетей, радио- и телевизионных антенн, телеграфных, телефонных и радиотрансляционных линий, а также зданий и сооружений, эксплуатация которых связана с применением, производством или хранением пороха и взрывчатых веществ.

Настоящая Инструкция регламентирует мероприятия по молниезащите, выполняемые при строительстве, и не исключает использования дополнительных средств молниезащиты внутри здания и сооружения при проведении реконструкции или установке дополнительного технологического или электрического оборудования.

При разработке проектов зданий и сооружений помимо требований Инструкции должны быть учтены требования к выполнению молниезащиты других действующих норм, правил, инструкций, государственных стандартов.

С введением в действие настоящей Инструкции утрачивает силу "Инструкция по проектированию и устройству молниезащиты зданий и сооружений" СН 305-77.

ПОСОБИЕ К "ИНСТРУКЦИИ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ" (РД34.21.122-87)

2.1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к I категории, должна выполняться отдельно стоящими стержневыми (рис. 1) или тросовыми (рис. 2) молниеотводами.

Рис. 1. Отдельно стоящий стержневой молниеотвод:1 — защищаемый объект; 2 — металлические коммуникации

Рис. 2. Отдельно стоящий тросовый молниеотвод. Обозначения те же, что и на рис. 1

Указанные молниеотводы должны обеспечивать зону защиты типа А в соответствии с требованиями приложения 3. При этом обеспечивается удаление элементов молниеотводов от защищаемого объекта и подземных металлических коммуникаций в соответствии с пп. 2.3, 2.4, 2.5.

2.2. Выбор заземлителя защиты от прямых ударов молнии (естественного или искусственного) определяется требованиями п. 1.8.

а) один (и более) железобетонный подножник длиной не менее 2 м или одна (и более) железобетонная свая длиной не менее 5 м;

б) одна (и более) заглубленная в землю не менее чем на 5 м стойка железобетонной опоры диаметром не менее 0,25 м;

в) железобетонный фундамент произвольной формы с площадью поверхности контакта с землей не менее 10 м2;

г) искусственный заземлитель, состоящий из трех и более вертикальных электродов длиной не менее 3 м,объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м. Минимальные сечения (диаметры) электродов определяются по табл. 3.

Молниезащита своими руками: советы профессионалов

Таблица 2

Заземлитель Эскиз Размеры, м
Железобетонный подножник a ≥ 1,8
b ≥ 0,4
l ≥ 2,2
Железобетонная свая d = 0,25-0,4
l ≥ 5
Стальной двухстержневой: полоса размером 40×4 мм стержни диаметром d=10-20 мм t ≥ 0,5
l = 3-5
c = 3-5
Стальной трехстержневой: полоса размером 40×4 мм стержни диаметром d=10-20 мм t ≥ 0,5
l = 3-5
c = 5-6

https://www.youtube.com/watch?v=ytdevru

Таблица 3

Форма токоотвода и заземлителя Сечение (диаметр) токоотвода и заземлителя, проложенных
снаружи здания на воздухе в земле
Круглые токоотводы и перемычки диаметром, мм 6 -
Круглые вертикальные электроды диаметром, мм - 10
Круглые горизонтальные* электроды диаметром, мм - 10
Прямоугольные электроды:
сечением, мм 48 160
толщиной, мм 4 4
* Только для выравнивания потенциалов внутри зданий и для прокладки наружных контуров на дне котлована по периметру здания.

2.3. Наименьшее допустимое расстояние Sв по воздуху от защищаемого объекта до опоры (токоотвода) стержневого или тросового молниеотвода (см. рис. 1 и 2) определяется в зависимости от высоты здания, конструкции заземлителя и эквивалентного удельного электрического сопротивления грунта ρ , Ом·м.

при ρ {amp}lt; 100 Ом·м. для заземлителя любой конструкции, приведенной в п. 2.2, Sв = 3 м;

при 100 {amp}lt; ρ ≤ 1000 Ом·м.

для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длина которых указана в п. 2.2а, б, Sв = 3 l0-2 (ρ—100);

для заземлителей, состоящих из четырех железобетонных свай либо, подножников, расположенных в углах прямоугольника на расстоянии 3—8 м один от другого, или железобетонного фундамента произвольной формы с площадью поверхности контакта с землей не менее 70 м2 или искусственных заземлителей, указанных в п. 2.2г, Sв = 4 м.

Для зданий и сооружений большей высоты определенное выше значение Sв должно быть увеличено на 1 м в расчете на каждые 10 м высоты объекта сверх 30 м.

Молниезащита своими руками: советы профессионалов

2.4. Наименьшее допустимое расстояние Sв от защищаемого объекта до троса в середине пролета (рис. 2) определяется в зависимости от конструкции заземлителя, эквивалентного удельного сопротивления грунта ρ, Ом·м., и суммарной длины l молниеприемников и токоотводов.

при ρ {amp}lt; 100 Ом·м. для заземлителя любой конструкции, приведенной в п. 2.2, Sв1 = 3,5 м;

для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длина которых указана в п. 2.2a, б, Sв = 3,5 3·10-3 (ρ-100);

для заземлителей, состоящих из четырех железобетонных свай или подножников, расположенных на расстоянии 3—8 м один от другого, или искусственных заземлителей, указанных в п. 2.2г, Sв1 = 4м.

При суммарной длине молниеприемников и токоотводов l = 200-300 м наименьшее допустимое расстояние Sв1 должно быть увеличено на 2 м по сравнению с определенными выше значениями.

2.5. Для исключения заноса высокого потенциала в защищаемое здание или сооружение но подземным металлическим коммуникациям (в том числе по электрическим кабелям любого назначения) заземлители защиты от прямых ударов молнии должны быть по возможности удалены от этих коммуникаций на максимальные расстояния, допустимые по технологическим требованиям.

2.6. При наличии на зданиях и сооружениях прямых газоотводных и дыхательных труб для свободного отвода в атмосферу газов, паров и взвесей взрывоопасной концентрации в зону защиты молниеотводов должно входить пространство над обрезом труб, ограниченное полушарием радиусом 5 м.

для газов тяжелее воздуха при избыточном давлении внутри установки менее 5,05 кПа (0,05 ат) Н = 1 ì, R = 2 м; 5,05-25,25 кПа (0,05 — 0,25 ат) H = 2,5 м, R = 5 м,

до 25,25 кПа H = 2,5 м, R = 5 м;

свыше 25,25 кПа H = 5 м, R = 5 м

Не требуется включать в зону защиты молниеотводов пространство над обрезом труб: при выбросе газов невзрывоопасной концентрации; наличии азотного дыхания; при постоянно горящих факелах и факелах, поджигаемых в момент выброса газов; для вытяжных вентиляционных шахт, предохранительных и аварийных клапанов, выброс газов взрывоопасной концентрации из которых осуществляется только в аварийных случаях.

а) металлические конструкции и корпуса всего оборудования и аппаратов, находящиеся в защищаемом здании, должны быть присоединены к заземляющему устройству электроустановок, указанному в п. 1.7, или к железобетонному фундаменту здания (с учетом требований п. 1.8). Наименьшие допустимые расстояния в земле между этим заземлителем и заземлителями защиты от прямых ударов молнии должны быть в соответствии с п. 2.5;

Молниезащита своими руками: советы профессионалов

б) внутри зданий и сооружений между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстояние менее 10 см через каждые 20 м следует приваривать или припаивать перемычки из стальной проволоки диаметром не менее 5 мм или стальной ленты сечением не менее 24 мм2 , для кабелей с металлическими оболочками или броней перемычки должны выполняться из гибкого медного проводника в соответствии с указаниями СНиП 3.05.06-85;

в) в соединениях элементов трубопроводов или других протяженных металлических предметов должны быть обеспечены переходные сопротивления не более 0,03 Ом на каждый контакт. При невозможности обеспечения контакта с указанным переходным сопротивлением с помощью болтовых соединений необходимо устройство стальных перемычек, размеры которых указаны в подпункте "б".

2.8. Защита от заноса высокого потенциала по подземным металлическим коммуникациям (трубопроводам, кабелям в наружных металлических оболочках или трубах) должна осуществляться путем их присоединения на вводе в здание или сооружение к арматуре его железобетонного фундамента, а при невозможности использования последнего в качестве заземлителя — к искусственному заземлителю, указанномув п. 2.2 г.

2.9. Защита от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям должна осуществляться путем их заземления на вводе в здание или сооружение и на двух ближайших к этому вводу опорах коммуникации. В качестве заземлителей следует использовать железобетонные фундаменты здания или сооружения и каждой из опор, а при невозможности такого использования (см. п. 1.8) — искусственные заземлители, согласно п. 2.2г.

2.10. Ввода здания воздушных линий электропередачи напряжением до 1 кВ, сетей телефона, радио, сигнализации должен осуществляться только кабелями длиной не менее 50 м с металлической броней или оболочкой или кабелями, проложенными в металлических трубах.

На вводе в здание металлические трубы, броня и оболочки кабелей, в том числе с изоляционным покрытием металлической оболочки (например, ААШв, ААШп) , должны быть присоединены к железобетонному фундаменту здания или (см. п. 1.8) к искусственному заземлителю, указанному в п. 2.2г.

В месте перехода воздушной линии электропередачи в кабель металлические броня и оболочка кабеля, а также штыри или крючья изоляторов воздушной линии должны быть присоединены к заземлителю, указанному в п. 2.2г. К такому же заземлителю должны быть присоединены штыри или крючья изоляторов на опоре воздушной линии электропередачи, ближайшей к месту перехода в кабель.

Кроме того, в месте перехода воздушной линии электропередачи в кабель между каждой жилой кабеля и заземленными элементами должны быть обеспечены закрытые воздушные искровые промежутки длиной 2—3 мм установлен вентильный разрядник низкого напряжения, например РВН-0,5.

Защита от заноса высоких потенциалов по воздушным линиям электропередачи напряжением выше 1 кВ, вводимым в подстанции, размещенные в защищаемом здании (внутрицеховые или пристроенные), должна выполняться в соответствии с ПУЭ.

2.11. Защита от прямых ударов молнии зданий и сооружений II категории с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищаемом объекте стержневыми или тросовыми молниеотводами, обеспечивающими зону защиты в соответствии с требованиями табл. 1, п. 2.6 и приложения 3.

При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1:8 может быть использована также молниеприемная сетка при обязательном выполнении требований п. 2.6.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. В соответствии с назначением зданий и сооружений необходимость выполнения молниезащиты и ее категория, а при использовании стержневых и тросовых молниеотводов — тип зоны защиты определяются по табл. 1 в зависимости от среднегодовой продолжительности гроз в месте нахождения здания или сооружения, а также от ожидаемого количества поражений его молнией в год. Устройство молниезащиты обязательно при одновременном выполнении условий, записанных в графах 3 и 4 табл. 1.

Оценка среднегодовой продолжительности гроз и ожидаемого количества поражений молнией зданий или сооружений производится согласно приложению 2; построение зон защиты различных типов — согласно приложению 3.

Таблица 1

№ пп. Здания и сооружения Местоположение Тип зоны защиты при использовании стержневых и тросовых молниеотводов Категория молниезащиты
1 2 3 4 5
1 Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов В-I и В-II На всей территории СССР Зона А I
2 То же классов В-Iа, В-Iб, В-IIа В местностях со средней продолжительностью гроз 10 ч в год и более При ожидаемом количестве поражений молнией в год здания или сооружения N{amp}gt;1 — зона А; при N≤1 — зона Б II
3 Наружные установки, создающие согласно ПУЭ зону класса В-Iг На всей территории СССР Зона Б II
4 Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа В местностях со средней продолжительностью гроз 20 ч в год и более Для зданий и сооружений I и II степеней огнестойкости при 0,1{amp}lt;n{amp}amp;le;2{amp}gt; 2- зона А III
5 Расположенные в сельской местности небольшие строения III — V степеней огнестойкости, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа В местностях со средней продолжительностью гроз 20 ч в год и более при N{amp}lt; 0,02 - III (п. 2.30)
6 Наружные установки и открытые склады, создающие согласно ПУЭ зону классов П-III В местностях со средней продолжительностью гроз 20 ч в год и более При 0,1{amp}lt;n{amp}amp;le;2{amp}gt;2 — зона А III
7 Здания и сооружения III, IIIa, IIIб, IV, V степеней огнестойкости, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов То же При 0,1{amp}lt;n{amp}amp;le;2{amp}gt;2 — зона А III
8 Здания и сооружения из легких металлических конструкций со сгораемым утеплителем (IVa степени огнестойкости), в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов В местностях со средней продолжительностью гроз 10 ч в год и более При 0,1{amp}lt;n{amp}amp;le;2{amp}gt;2 — зона А III
9 Небольшие строения III-V степеней огнестойкости, расположенные в сельской местности, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов В местностях со средней продолжительностью гроз 20 ч в год и более для III, IIIa, IIIб, IV, V степеней огнестойкости при N{amp}lt;0,1, для IVa степени огнестойкости при N{amp}lt;0,02 - III (п. 2.30)
10 Здания вычислительных центров, в том числе расположенные в городской застройке В местностях со средней продолжительностью гроз 20 ч в год и более Зона Б II
11 Животноводческие и птицеводческие здания и сооружения III-V степеней огнестойкости: для крупного рогатого скота и свиней на 100 голов и более, для овец на 500 голов и более, для птицы на 1000 голов и более, для лошадей на 40 голов и более В местностях со средней продолжительностью гроз 40 ч в год и более Зона Б III
12 Дымовые и прочие трубы предприятий и котельных, башни и вышки всех назначений высотой 15 м и более В местностях со средней продолжительностью гроз 10 ч в год и более - III (п. 2.31)
13 Жилые и общественные здания, высота которых более чем на 25 м превышает среднюю высоту окружающих зданий в радиусе 400 м, а также отдельно стоящие здания высотой более 30 м, удаленные от других зданий более чем на 400 м В местностях со средней продолжительностью гроз 20 ч в год и более Зона Б . III
14 Отдельно стоящие жилые и общественные здания в сельской местности высотой более 30 м То же Зона Б III
15 Общественные здания III-V степеней огнестойкости следующего назначения: детские дошкольные учреждения, школы и школы-интернаты, стационары лечебных учреждений, спальные корпуса и столовые учреждений здравоохранения и отдыха, культурно-просветительные и зрелищные учреждения, административные здания, вокзалы, гостиницы, мотели и кемпинги То же Зона Б III
16 Открытые зрелищные учреждения (зрительные залы открытых кинотеатров, трибуны открытых стадионов и т.п.) То же Зона Б III
17 Здания и сооружения, являющиеся памятниками истории, архитектуры и культуры (скульптуры, обелиски и т.п.) То же Зона Б III
Предлагаем ознакомиться  Кизильник в ландшафтном дизайне

1.2. Здания и сооружения, отнесенные по устройству молниезащиты к I и II категориям, должны быть защищены от прямых ударов молнии, вторичных ее проявлений и заноса высокого потенциала через наземные (надземные) и подземные металлические коммуникации.

Здания и сооружения, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии и заноса высокого потенциала через наземные (надземные) металлические коммуникации. Наружные установки, отнесенные по устройству молниезащиты ко II категории, должны быть защищены от прямых ударов и вторичных проявлений молнии.

Наружные установки, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии.

Молниезащита своими руками: советы профессионалов

Внутри зданий большой площади (шириной более 100 м) необходимо выполнять мероприятия по выравниванию потенциалов.

1.3. Для зданий и сооружений с помещениями, требующими устройства молниезащиты I и II или I и III категорий, молниезащиту всего здания или сооружения следует выполнять по I категории.

Если площадь помещений I категории молниезащиты составляет менее 30% площади всех помещений здания (на всех этажах), молниезащиту всего здания допускается выполнять по II категории независимо от категории остальных помещений. При этом на вводе в помещения I категории должна быть предусмотрена защита от заноса высокого потенциала по подземным и наземным (надземным) коммуникациям, выполняемая согласно пп. 2.8 и 2.9.

https://www.youtube.com/watch?v=ytpolicyandsafetyru

1.4. Для зданий и сооружений с помещениями, требующими устройства молниезащиты II и III категорий, молниезащиту всего здания или сооружения следует выполнять по II категории

Если площадь помещений II категории молниезащиты составляет менее 30% площади всех помещений здания (на всех этажах), молниезащиту всего здания допускается выполнять по III категории. При этом на вводе в помещения II категории должна быть предусмотрена защита от заноса высокого потенциала по подземным и наземным (надземным) коммуникациям, выполняемая согласно пп. 2.22 и 2.23.

1.5. Для зданий и сооружений, не менее 30% общей площади которых приходится на помещения, требующие устройства молниезащиты по I, II или III категории, молниезащита этой части зданий и сооружений должна быть выполнена в соответствии с п. 1.2.

по I категории — согласно пп. 2.8, 2.9; по II и III категориям — путем присоединения коммуникаций к заземляющему устройству электроустановок, соответствующему указаниям п. 1.7, или к арматуре железобетонного фундамента здания (с учетом требований п. 1.8). Такое же присоединение должно быть предусмотрено для внутренних коммуникаций (не вводимых извне)

1.6. В целях защиты зданий и сооружений любой категории от прямых ударов молнии следует максимально использовать в качестве естественных молниеотводов существующие высокие сооружения (дымовые трубы, водонапорные башни, прожекторные мачты, воздушные линии электропередачи и т.п.), а также молниеотводы других близрасположенных сооружений.

Если зданию или сооружение частично вписывается в зону защиты естественных молниеотводов или соседних объектов, защита от прямых ударов молнии должна предусматриваться только для остальной, незащищенной его части. Если в ходе эксплуатации здания или сооружения реконструкция или демонтаж соседних объектов приведет к увеличению этой незащищенной части, соответствующие изменения защиты от прямых ударов молнии должны быть выполнены до начала ближайшего грозового сезона;

1.7. В качестве заземлителей молниезащиты допускается использовать все рекомендуемые ПУЭ заземлители электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ.

1.8. Железобетонные фундаменты зданий, сооружений, наружных установок, опор молниеотводов следует, как правило, использовать в качестве заземлителей молниезащиты при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям с помощью сварки.

Битумные и битумно-латексные покрытия не являются препятствием для такого использования фундаментов. В средне- и сильноагрессивных грунтах, где защита железобетона от коррозии выполняется Эпоксидными и другими полимерными покрытиями, а также при влажности грунта менее 3% использовать железобетонные фундаменты в качестве заземлителей не допускается.

Искусственные заземлители следует располагать под асфальтовым покрытием или в редко посещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т.п.).

1.9. Выравнивание потенциалов внутри зданий и сооружений шириной более 100 м должно происходить за счет непрерывной электрической связи между несущими внутрицеховыми конструкциями и железобетонными фундаментами, если последние могут быть использованы в качестве заземлителей согласно п. 1.8.

В противном случае должна быть обеспечена прокладка внутри здания в земле на глубине не менее 0,5 м протяженных горизонтальных электродов сечением не менее 100 мм. Электроды следует прокладывать не реже чем через 60 м по ширине здания и присоединять по его торцам с двух сторон к наружному контуру заземления.

6. СРЕДСТВА И СПОСОБЫ МОЛНИЕЗАЩИТЫ

Внешняя МЗС может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие функции естественных молниеотводов) или может быть установлена на защищаемом сооружении и даже быть его частью.

Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта

https://www.youtube.com/watch?v=ytaboutru

Токи молнии, попадающие в молниеприемники, отводятся в заземлитель через систему токоотводов (спусков) и растекаются в земле

Молниезащита представляет собой комплекс мероприятий, направленных на предотвращение прямого удара молнии в объект или на устранение опасных последствий, связанных с прямым ударом; к этому комплексу относятся также средства защиты, предохраняющие объект от вторичных воздействий молнии и заноса высокого потенциала.

Средством защиты от прямых ударов молнии служит молниеотвод — устройство, рассчитанное на непосредственный контакт с каналом молнии и отводящее ее ток в землю.

Молниеотводы разделяются на отдельно стоящие, обеспечивающие растекание тока молнии минуя объект, и установленные на самом объекте. При этом растекание тока происходит по контролируемым путям так, что обеспечивается низкая вероятность поражения людей (животных) , взрыва или пожара.

Установка отдельно стоящих молниеотводов исключает возможность термического воздействия на объект при поражении молниеотвода; для объектов с постоянной взрывоопасностью, отнесенных к I категории, принят этот способ защиты, обеспечивающий минимальное количество опасных воздействий при грозе. Для объектов II и III категорий, характеризующихся меньшим риском взрыва или пожара, в равной мере допустимо использование отдельно стоящих молниеотводов и установленных на защищаемом объекте.

Молниеотвод состоит из следующих элементов: молниеприемника, опоры, токоотвода и заземлителя. Однако на практике они могут образовывать единую конструкцию, например металлическая мачта или ферма здания представляет собой молниеприемник, опору и токоотвод одновременно.

Молниезащита своими руками: советы профессионалов

По типу молниеприемника молниеотводы разделяются на стержневые (вертикальные), тросовые (горизонтальные протяженные) и сетки, состоящие из продольных и поперечных горизонтальных электродов, соединенных в местах пересечений. Стержневые и тросовые молниеотводы могут быть как отдельно стоящие, так и установленные на объекте;

молниеприемные сетки укладываются на неметаллическую кровлю защищаемых зданий и сооружений. Однако укладка сеток рациональна лишь на зданиях с горизонтальными крышами, где равновероятно поражение молнией любого их участка. При больших уклонах крыши наиболее вероятны удары молнии вблизи ее конька, и в этих случаях укладка сетки по всей поверхности кровли приведет к неоправданным затратам металла;

более экономична установка стержневых или тросовых молниеприемников, в зону защиты которых входит весь объект. По этой причине в п. 2.11 укладка молниеприемной сетки допускается на неметаллических кровлях с уклоном не более 1:8. Иногда укладка сетки поверх кровли неудобна из-за ее конструктивных элементов (например, волнистой поверхности покрытия).

При выборе средств защиты от прямых ударов молнии, типов молниеотводов необходимо учитывать экономические соображения, технологические и конструктивные особенности объектов. Во всех возможных случаях близрасположенные высокие сооружения необходимо использовать как отдельно стоящие молниеотводы, а конструктивные элементы зданий и сооружений, например металлическую кровлю, фермы, металлические и железобетонные колонны и фундаменты, — как молниеприемники, токоотводы и заземлители.

Эти положения учтены в пп. 1.6, 1.8, 2.11, 2.12, 2.25. Защита от термических воздействий прямого удара молнии осуществляется путем надлежащего выбора сечений молниеприемников и токоотводов (табл. 3), толщины корпусов наружных установок (п. 2.15), расплавление и проплавление которых не может произойти при указанных выше параметрах тока молнии, переносимого заряда и температуры в канале.

Защита от механических разрушений различных строительных конструкций при прямых ударах молнии осуществляется: бетона — армированием и обеспечением надежных контактов в местах соединения с арматурой (п. 2.12); неметаллических выступающих частей и покрытий зданий — применением материалов, не содержащих влаги или газогенерирующих веществ.

Защита от перекрытий на защищаемый объект при поражении отдельно стоящих молниеотводов достигается надлежащим выбором, конструкций заземлителей и изоляционных расстояний между молниеотводом и объектом (пп. 2.2 — 2.5). Защита от перекрытий внутри здания при протекании по нему тока молнии обеспечивается надлежащим выбором количества токоотводов, проложенных к заземлителям кратчайшими путями (п. 2.11).

Защита от напряжении прикосновения и шага (пп. 2.12, 2.13) обеспечивается путем прокладки токоотводов в малодоступных для людей местах и равномерного размещения заземлителей по территории объекта.

Защита от вторичных воздействий молнии обеспечивается следующими мероприятиями. От электростатической индукции и заноса высокого потенциала — ограничением перенапряжений, наведенных на оборудовании, металлических конструкциях и вводимых коммуникациях, путем их присоединения к заземлителям определенных конструкций;

от электромагнитной индукции — ограничением площади незамкнутых контуров внутри зданий путем наложения перемычек в местах сближения металлических коммуникаций. Для исключения искрения в местах соединений протяженных металлических коммуникаций обеспечиваются низкие переходные сопротивления — не более 0,03 Ом, например, во фланцевых соединениях трубопроводов этому требованию соответствует затяжка шести болтов на каждый фланец (п. 2.7).

МОЛНИЕЗАЩИТА III КАТЕГОРИИ

Таблица 2

Таблица 3

Молниезащита своими руками: советы профессионалов

Установка молниеприемников или наложение молниеприемной сетки не требуется для зданий и сооружений с металлическими фермами при условии, что в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками, присоединенными к металлу кровли, в. также соблюдены требования п. 2.6.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Токоотводы от металлической кровли или молниеприемной сетки должны быть проложены к заземлителям не реже чем через 25 м по периметру здания.

2.12. При прокладке молниеприемной сетки и установке молниеотводов на защищаемом объекте всюду, где это возможно, в качестве токоотводов следует использовать металлические конструкции зданий и сооружений (колонны, фермы, рамы, пожарные лестницы и т.п., а также арматуру железобетонных конструкции) при условии обеспечения непрерывной электрической связи в соединениях конструкций и арматуры с молниеприемниками и заземлителями, выполняемых, как правило, сваркой.

Токоотводы, прокладываемые по наружным стенам зданий, следует располагать не ближе чем в 3м от входов или в местах, не доступных для прикосновения людей.

2.13. В качестве заземлителей защиты от прямых ударов молнии во всех возможных случаях (см. п. 1.8) следует использовать железобетонные фундаменты зданий и сооружений.

при наличии стержневых и тросовых молниеотводов каждый токоотвод присоединяется к заземлителю, отвечающему требованиям п. 2.2г;

в грунтах с эквивалентным удельным сопротивлением ρ ≤ 500 Ом·м при площади здания более 250 м2 выполняется контур из горизонтальных электродов, уложенных в земле на глубине не менее 0,5 м, а при площади здания менее 250 м2 к этому контуру в местах присоединения токоотводов приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2—3 м;

в грунтах с удельным сопротивлением 500 {amp}lt; ρ ≤ 1000 Ом·м при площади здания более 900 м2 достаточно выполнить контур только из горизонтальных электродов, а при площади здания менее 900 м2 к этому контуру в местах присоединения токоотводов приваривается не менее двух вертикальных или горизонтальных лучевых электродов длиной 2—3м на расстоянии 3—5 м один от другого.

Минимально допустимые сечения (диаметры) электродов искусственных заземлителей определяются по табл. 3.

В зданиях большой площади наружный контур заземления может также использоваться для выравнивания потенциала внутри здания в соответствии с требованиями п. 1.9.

Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановок в соответствии с указаниями п. 1.7

2.14. При установке отдельно стоящих молниеотводов расстояние от них по воздуху и в земле до защищаемого объекта и вводимых в него подземных коммуникаций не нормируется.

а) корпуса установок из железобетона, металлические корпуса установок и отдельных резервуаров при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими;

б) металлические корпуса установок и отдельных резервуаров при толщине металла крыши 4 мм и более, а также отдельные резервуары вместимостью менее 200 м3 независимо от толщины металла крыши, а также металлические кожухи теплоизолированных установок достаточно присоединить к заземлителю.

2.16. Для резервуарных парков, содержащих сжиженные газы, общей вместимостью более 8000 м3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горючие газы и легковоспламеняющиеся жидкости, при общей вместимости группы резервуаров более 100 тыс. м3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами.

2.17. Очистные сооружения подлежат защите от прямых ударов молнии, если температура вспышки содержащегося в сточных водах продукта превышает его рабочую температуру менее чем на 10 °С. В зону защиты молниеотводов должно входить пространство, основание которого выходит за пределы очистного сооружения на 5 м вкаждую сторону от его стенок, а высота равна высоте сооружения плюс 3 м.

2.18. Если на наружных установках или в резервуарах (наземных или подземных), содержащих горючие газы или легковоспламеняющиеся жидкости, имеются газоотводные или дыхательные трубы, то они и пространство над ними (см. п. 2.6) должны быть защищены от прямых ударов молнии. Такое же пространство защищается над срезом горловины цистерн, в которые происходит открытый налив продукта на сливоналивной эстакаде. Защите от прямых ударов молнии подлежат также дыхательные клапаны и пространство над ними, ограниченное цилиндром высотой 2,5 м с радиусом 5 м.

Для резервуаров с плавающими крышами или понтонами и зону защиты молниеотводов должно входить пространство, ограниченное поверхностью, любая точка которой отстоит на 5 м от легковоспламеняющейся жидкости в кольцевом зазоре.

2.19. Для наружных установок, перечисленных в пп. 2.15 — 2.18, в ткачестве заземлителей защиты от прямых ударов молнии следует по возможности использовать железобетонные фундаменты этих установок или (опор отдельно стоящих молниеотводов либо выполнять искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

К этим заземлителям, размещенным не реже чем через 50 м по периметру основания установки, должны быть присоединены корпуса наружных установок или токоотводы установленных на них молниеотводов, число присоединений — не менее двух.

а) металлические корпуса всего оборудования и аппаратов, установленных в защищаемом здании (сооружении), должны быть присоединены к заземляющему устройству электроустановок, соответствующему указаниям п. 1.7, или к железобетонному фундаменту здания (с учетом требований п. 1.8) ;

б) внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их сближения на расстояние менее 10 см через каждые 30 м должны быть выполнены перемычки в соответствии с указаниями п. 2.76;

в) во фланцевых соединениях трубопроводов внутри здания следует обеспечить нормальную затяжку не менее четырех болтов на каждый фланец.

2.21. Для защиты наружных установок от вторичных проявлений молнии металлические корпуса установленных на них аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

На резервуарах с плавающими крышами или понтонами необходимо устанавливать не менее двух гибких стальных перемычек между плавающими крышами или понтонами и металлическим корпусом резервуара или токоотводами установленных на резервуаре молниеотводов.

2.22. Защита от заноса высокого потенциала по подземным коммуникациям осуществляется присоединением их на вводе в здание или сооружение к заземлителю электроустановок или защиты от прямых ударов молнии.

2.23. Защита от заноса высокого потенциала по внешним наземным (надземным) коммуникациям выполняется путем их присоединения на вводе в здание или сооружение к заземлителю электроустановок или защиты от прямых ударов молнии, а на ближайшей к вводу опоре коммуникации — к ее железобетонному фундаменту.

2.24. Защита от заноса высокого потенциала по воздушным линиям электропередачи, сетям телефона, радио и сигнализации должна быть выполнена в соответствии с п. 2.10.

При этом в случае использования молниеприемной сетки шаг ее ячеек должен быть не более 12 × 12м.

2.26. Во всех возможных случаях (см. п. 1.7) в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты зданий и сооружений

каждый токоотвод от стержневых и тросовых молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;

Предлагаем ознакомиться  Простой рецепт приготовления вина из винограда в домашних условиях

при использовании в качестве молниеприемников сетки или металлической кровли по периметру здания в земле на глубине не менее 0,5 м должен быть проложен наружный контур, состоящий из горизонтальных электродов. В грунтах с эквивалентным удельным сопротивлением 500 {amp}lt; ρ ≤ 1000 Ом·м и при площади здания менее 900 м2 к этому контуру в местах присоединения токоотводов следует приваривать по одному вертикальномуили горизонтальному лучевому электроду длиной 2—3 м.

В зданиях большой площади (шириной более 100 м) наружный контур заземления может также использоваться для выравнивания потенциалов внутри здания в соответствии с требованиями п. 1.9

Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.

2.27. При защите строений для крупного рогатого скота и конюшен отдельно стоящими молниеотводами их опоры и заземлители следует располагать не ближе чем в 5м от входа в строения.

При установке молниеприемников или укладке сетки на защищаемом стрости в качестве заземлителей следует использовать железобетонный фундамент (см. п. 1.8) или наружный контур, проложенный по периметру строения под асфальтовой или бетонной отмосткой в соответствии с указаниями п. 2.26.

Молниезащита своими руками: советы профессионалов

К заземлителям защиты от прямых ударов молнии должны быть присоединены находящиеся внутри строения металлические конструкции, оборудование и трубопроводы, а также устройства выравнивания электрических потенциалов.

3.2. Внешняя молниезащитная система

Таблица 3.1

Материал и минимальные сечения элементов внешней МЗС

Уровень защиты Материал Сечение, мм2
молниеприемника токоотвода заземлителя
I-IV Сталь 50 50 80
I-IV Алюминий 70 25 Не применяется
I-IV Медь 35 16 50

Примечание. Указанные значения могут быть увеличены в зависимости от повышенной коррозии или механических воздействий.

3.2.1. Молниеприемники

3.2.1.1. Общие соображения

Молниеприемники могут быть специально установленными, в том числе на объекте, либо их функции выполняют конструктивные элементы защищаемого объекта; в последнем случае они называются естественными молниеприемниками.

Молниеприемники могут состоять из произвольной комбинации следующих элементов: стержней, натянутых проводов (тросов), сетчатых проводников (сеток).

Молниезащита своими руками: советы профессионалов

3.2.1.2. Естественные молниеприемники

электрическая непрерывность между разными частями обеспечена на долгий срок;

толщина металла кровли составляет не менее величины t, приведенной в табл. 3.2, если необходимо предохранить кровлю от повреждения или прожога

толщина металла кровли составляет не менее 0,5 мм, если ее необязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;

кровля не имеет изоляционного покрытия. При этом небольшой слой антикоррозионной краски или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;

неметаллические покрытия на или под металлической кровлей не выходят за пределы защищаемого объекта;

б) металлические конструкции крыши (фермы, соединенная между собой стальная арматура);

в) металлические элементы типа водосточных труб, украшений, ограждений по краю крыши и т. п., если их сечение не меньше значений, предписанных для обычных молниеприемников;

г) технологические металлические трубы и резервуары, если они выполнены из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям;

д) металлические трубы и резервуары, если они выполнены из металла толщиной не менее значения t, приведенного в табл. 3.2, и если повышение температуры с внутренней стороны объекта в точке удара молнии не представляет опасности.

Таблица 3.2

Толщина кровли, трубы или корпуса резервуара, выполняющих функции естественного молниеприемника

Уровень защиты Материал Толщина t, мм, не менее
I-IV Железо 4
I-IV Медь 5
I-IV Алюминий 7

3.2.2. Токоотводы

3.2.2.1. Общие соображения

Молниезащита своими руками: советы профессионалов

а) ток растекался по нескольким параллельным путям;

б) длина этих путей была ограничена до минимума.

3.2.2.2. Расположение токоотводов в устройствах молниезащиты, изолированных от защищаемого объекта

Если молниеприемник состоит из стержней, установленных на отдельно стоящих опорах (или одной опоре), на каждую опору должен быть предусмотрен минимум один токоотвод.

Если молниеприемник состоит из отдельно стоящих горизонтальных проводов (тросов) или из одного провода (троса), на каждый конец троса требуется минимум по одному токоотводу.

Если молниеприемник представляет собой сетчатую конструкцию, подвешенную над защищаемым объектом, на каждую ее опору требуется не менее одного токоотвода. Общее количество токоотводов должно быть не менее двух.

3.2.2.3. Расположение токоотводов при неизолированных устройствах молниезащиты

Токоотводы располагаются по периметру защищаемого объекта таким образом, чтобы среднее расстояние между ними было не меньше значений, приведенных в табл. 3.3.

Токоотводы соединяются горизонтальными поясами вблизи поверхности земли и через каждые 20 м по высоте здания.

Таблица 3.3

Средние расстояния между токоотводами в зависимости от уровня защищенности

Уровень защиты Среднее расстояние, м
I 10
II 15
III 20
IV 25

3.2.2.4. Указания по размещению токоотводов

Желательно, чтобы токоотводы равномерно располагались по периметру защищаемого объекта. По возможности они прокладываются вблизи углов зданий.

если стена выполнена из негорючего материала, токоотводы могут быть закреплены на поверхности стены или проходить в стене;

если стена выполнена из горючего материала, токоотводы могут быть закреплены непосредственно на поверхности стены, так чтобы повышение температуры при протекании тока молнии не представляло опасности для материала стены;

если стена выполнена из горючего материала и повышение температуры токоотводов представляет для него опасность, токоотводы должны располагаться таким образом, чтобы расстояние между ними и защищаемым объектом всегда превышало 0,1 м. Металлические скобы для крепления токоотводов могут быть в контакте со стеной.

Не следует прокладывать токоотводы в водосточных трубах. Рекомендуется размещать токоотводы на максимально возможных расстояниях от дверей и окон

Токоотводы прокладываются по прямым и вертикальным линиям, так чтобы путь до земли был по возможности кратчайшим. Не рекомендуется прокладка токоотводов в виде петель.

3.2.2.5. Естественные элементы токоотводов

электрическая непрерывность между разными элементами является долговечной и соответствует требованиям п. 3.2.4.2;

они имеют не меньшие размеры, чем требуются для специально предусмотренных токоотводов. Металлические конструкции могут иметь изоляционное покрытие;

б) металлический каркас здания или сооружения;

в) соединенная между собой стальная арматура здания или сооружения;

г) части фасада, профилированные элементы и опорные металлические конструкции фасада при условии, что их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5 мм.

Тросовая молниезащита

примерно 50 % соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой);

электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков и арматурой бетонных блоков, подготовленных на месте.

В прокладке горизонтальных поясов нет необходимости, если металлические каркасы здания или стальная арматура железобетона используются как токоотводы.

3.2.3. Заземлители

3.2.3.1. Общие соображения

Во всех случаях, за исключением использования отдельно стоящего молниеотвода, заземлитель молниезащиты следует совместить с заземлителями электроустановок и средств связи. Если эти заземлители должны быть разделены по каким-либо технологическим соображениям, их следует объединить в общую систему с помощью системы уравнивания потенциалов.

3.2.3.2. Специально прокладываемые заземляющие электроды

Целесообразно использовать следующие типы заземлителей: один или несколько контуров, вертикальные (или наклонные) электроды, радиально расходящиеся электроды или заземляющий контур, уложенный на дне котлована, заземляющие сетки.

Сильно заглубленные заземлители оказываются эффективными, если удельное сопротивление грунта уменьшается с глубиной и на большой глубине оказывается существенно меньше, чем на уровне обычного расположения.

Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен. Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными; при этом надо стремиться свести к минимуму их взаимное экранирование.

Глубина закладки и тип заземляющих электродов выбираются из условия обеспечения минимальной коррозии, а также возможно меньшей сезонной вариации сопротивления заземления в результате высыхания и промерзания грунта.

3.2.3.3. Естественные заземляющие электроды

В качестве заземляющих электродов может использоваться соединенная между собой арматура железобетона или иные подземные металлические конструкции, отвечающие требованиям п. 3.2.2.5. Если арматура железобетона используется как заземляющие электроды, повышенные требования предъявляются к местам ее соединений, чтобы исключить механическое разрушение бетона.

3.2.4. Крепление и соединения элементов внешней МЗС

3.2.4.1. Крепление

Молниеприемники и токоотводы жестко закрепляются, так чтобы исключить любой разрыв или ослабление крепления проводников под действием электродинамических сил или случайных механических воздействий (например, от порыва ветра или падения снежного пласта).

3.2.4.2. Соединения

Количество соединений проводника сводится к минимальному. Соединения выполняются сваркой, пайкой, допускается также вставка в зажимной наконечник или болтовое крепление

3.3. Выбор молниеотводов

3.3.1. Общие соображения

Выбор типа и высоты молниеотводов производится исходя из значений требуемой надежности Рз. Объект считается защищенным, если совокупность всех его молниеотводов обеспечивает надежность защиты не менее Рз.

Во всех случаях система защиты от прямых ударов молнии выбирается так, чтобы максимально использовались естественные молниеотводы, а если обеспечиваемая ими защищенность недостаточна - в комбинации со специально установленными молниеотводами

В общем случае выбор молниеотводов должен производиться при помощи соответствующих компьютерных программ, способных вычислять зоны защиты или вероятность прорыва молнии в объект (группу объектов) любой конфигурации при произвольном расположении практически любого числа молниеотводов различных типов.

При прочих равных условиях высоту молниеотводов можно снизить, если вместо стержневых конструкций применять тросовые, особенно при их подвеске по внешнему периметру объекта.

Если защита объекта обеспечивается простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры молниеотводов можно определять, пользуясь заданными в настоящем нормативе зонами защиты.

В случае проектирования молниезащиты для обычного объекта, возможно определение зон защиты по защитному углу или методом катящейся сферы согласно стандарту Международной электротехнической комиссии (IEC 1024) при условии, что расчетные требования Международной электротехнической комиссии оказываются более жесткими, чем требования настоящей Инструкции

3.3.2. Типовые зоны защиты стержневых и тросовых молниеотводов

3.3.2.1. Зоны защиты одиночного стержневого молниеотвода

Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус высотой h0 {amp}lt; h, вершина которого совпадает с вертикальной осью молниеотвода (рис. 3.1). Габариты зоны определяются двумя параметрами: высотой конуса h0 и радиусом конуса на уровне земли r0.

Приведенные ниже расчетные формулы (табл. 3.4) пригодны для молниеотводов высотой до 150 м. При более высоких молниеотводах следует пользоваться специальной методикой расчета.

Рис. 3.1. Зона защиты одиночного стержневого молниеотвода

(3.1)

Таблица 3.4

Расчет зоны защиты одиночного стержневого молниеотвода

Надежность защиты Рз Высота молниеотвода h, м Высота конуса h, м Радиус конуса r, м
0,9 От 0 до 100 0,85h 1,2h
От 100 до 150 0,85h [1,2-10-3 (h-100)]h
0,99 От 0 до 30 0,8h 0,8h
От 30 до 100 0,8h [0,8-1,43 10-3(h-30)]h
От 100 до 150 [0,8-10-3(h-100)]h 0,7h
0,999 От 0 до 30 0,7h 0,6h
От 30 до 100 [0,7-7,14 10-4(h-30)]h [0,6-1,43 10-3(h-30)]h
От 100 до 150 [0,65-10-3(h-100)]h [0,5-2 10-3(h-100)]h

3.3.2.2. Зоны защиты одиночного тросового молниеотвода

Стандартные зоны защиты одиночного тросового молниеотвода высотой h ограничены симметричными двускатными поверхностями, образующими в вертикальном сечении равнобедренный треугольник с вершиной на высоте h0 {amp}lt; h и основанием на уровне земли 2r0 (рис. 3.2).

Приведенные ниже расчетные формулы (табл. 3.5) пригодны для молниеотводов высотой до 150 м. При большей высоте следует пользоваться специальным программным обеспечением. Здесь и далее под h понимается минимальная высота троса над уровнем земли (с учетом провеса).

Рис. 3.2. Зона защиты одиночного тросового молниеотвода: L - расстояние между точками подвеса тросов

(3.2)

При необходимости расширить защищаемый объем к торцам зоны защиты собственно тросового молниеотвода могут добавляться зоны защиты несущих опор, которые рассчитываются по формулам одиночных стержневых молниеотводов, представленным в табл. 3.4. В случае больших провесов тросов, например, у воздушных линий электропередачи, рекомендуется рассчитывать обеспечиваемую вероятность прорыва молнии программными методами, поскольку построение зон защиты по минимальной высоте троса в пролете может привести к неоправданным затратам.

Таблица 3.5

Расчет зоны защиты одиночного тросового молниеотвода

Надежность защиты Рз Высота молниеотвода h, м Высота конуса h, м Радиус конуса r, м
0,9 От 0 до 150 0,87h 1,5h
0,99 От 0 до 30 0,8h 0,95h
От 30 до 100 0,8h [0,95-7,14 10-4(h-30)]h
От 100 до 150 0,8h [0,9-10-3(h-100)]h
0,999 От 0 до 30 0,75h 0,7h
От 30 до 100 [0,75-4,28 10-4(h-30)]h [0,7-1,43 10-3(h-30)]h
От 100 до 150 [0,72-10-3(h-100)]h [0,6-10-3(h-100)]h

3.3.2.3. Зоны защиты двойного стержневого молниеотвода

Молниеотвод считается двойным, когда расстояние между стержневыми молниеприемниками L не превышает предельной величины Lmax. В противном случае оба молниеотвода рассматриваются как одиночные.

Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного стержневого молниеотвода (высотой h и расстоянием L между молниеотводами) представлена на рис. 3.3. Построение внешних областей зон двойного молниеотвода (полуконусов с габаритами h0, r0) производится по формулам табл. 3.

4 для одиночных стержневых молниеотводов. Размеры внутренних областей определяются параметрами h0 и hc, первый из которых задает максимальную высоту зоны непосредственно у молниеотводов, а второй - минимальную высоту зоны посередине между молниеотводами. При расстоянии между молниеотводами L ≤ Lc граница зоны не имеет провеса (hc = h0). Для расстояний Lc ≤ L ≥ Lmax высота hc определяется по выражению

(3.3)

Входящие в него предельные расстояния Lmax и Lc вычисляются по эмпирическим формулам табл. 3.6, пригодным для молниеотводов высотой до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.

(3.4)

Рис. 3.3. Зона защиты двойного стержневого молниеотвода

(3.5)

причем при hx {amp}lt; hcLx = L / 2;

(3.6)

Таблица 3.6

Расчет параметров зоны защиты двойного стержневого молниеотвода

Надежность защиты Рз Высота молниеотвода h, м Lmax, м L, м
0,9 От 0 до 30 5,75h 2,5h
От 30 до 100 [5,75-3,57·10-3(h-30)]h 2,5h
От 100 до 150 5,5h 2,5h
0,99 От 0 до 30 4,75h 2,25h
От 30 до 100 [4,75-3,57·10-3(h-30)]h [2,25-0,01007·(h-30)]h
От 100 до 150 4,5h 1,5h
0,999 От 0 до 30 4,25h 2,25h
От 30 до 100 [4,25-3,57 10-3(h-30)]h [2,25-0,01007(h-30)]h
От 100 до 150 4,0h 1,5h

3.3.2.4. Зоны защиты двойного тросового молниеотвода

Молниеотвод считается двойным, когда расстояние между тросами L не превышает предельной величины Lmax. В противном случае оба молниеотвода рассматриваются как одиночные.

Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного тросового молниеотвода (высотой h и расстоянием между тросами L) представлена на рис. 3.4. Построение внешних областей зон (двух односкатных поверхностей с габаритами h0, r0) производится по формулам табл. 3.5 для одиночных тросовых молниеотводов.

Рис. 3.4. Зона защиты двойного тросового молниеотвода

Размеры внутренних областей определяются параметрами h0 и hc, первый из которых задает максимальную высоту зоны непосредственно у тросов, а второй - минимальную высоту зоны посередине между тросами. При расстоянии между тросами L ≤ hc граница зоны не имеет провеса (hc = h0). Для расстояний hcL ≤ Lmax высота hc определяется по выражению

(3.7)

Входящие в него предельные расстояния Lmax и Lc вычисляются по эмпирическим формулам табл. 3.7, пригодным для тросов с высотой подвеса до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.

(3.8)

Для расширения защищаемого объема на зону двойного тросового молниеотвода может быть наложена зона защиты опор, несущих тросы, которая строится как зона двойного стержневого молниеотвода, если расстояние L между опорами меньше Lmax, вычисленного по формулам табл. 3.6. В противном случае опоры должны рассматриваться как одиночные стержневые молниеотводы.

Когда тросы непараллельны или разновысоки, либо их высота изменяется по длине пролета, для оценки надежности их защиты следует воспользоваться специальным программным обеспечением. Также рекомендуется поступать при больших провесах тросов в пролете, чтобы избежать излишних запасов по надежности защиты.

Таблица 3.7

Расчет параметров зоны защиты двойного тросового молниеотвода

Надежность защиты Рз Высота молниеотвода h, м Lmax, м Lc, м
0,9 от 0 до 150 6,0h 3,0h
0,99 от 0 до 30 5,0h 2,5h
от 30 до 100 5,0h [2,5-7,14·10-3(h-30)]h
от 100 до 150 [5,0-5·10-3(h-100)]h [2,0-5·10-3(h-100)]h
0,999 от 0 до 30 4,75h 2,25h
от 30 до 100 [4,75-3,57·10-3(h-30)]h [2,25-3,57·10-3(h-30)]h
от 100 до 150 [4,5-5·10-3(h-100)]h [2,0-5·10-3(h-100)]h

3.3.2.5 Зоны защиты замкнутого тросового молниеотвода

Расчетные формулы п. 3.3.2.5 могут использоваться для определения высоты подвеса замкнутого тросового молниеотвода, предназначенного для защиты с требуемой надежностью объектов высотой h0 {amp}lt; 30 м, размещенных на прямоугольной площадке площадью S0 во внутреннем объеме зоны при минимальном горизонтальном смещении между молниеотводом и объектом, равном D (рис. 3.5). Под высотой подвеса троса подразумевается минимальное расстояние от троса до поверхности земли с учетом возможных провесов в летний сезон.

Рис. 3.5. Зона защиты замкнутого тросового молниеотвода

(3.9)

а) надежность защиты Рз = 0,99

; (3.10)

; (3.11)

б) надежность защиты Рз = 0,999

; (3.12)

; (3.13)

Расчетные соотношения справедливы, когда D {amp}gt; 5 м. Работа с меньшими горизонтальными смещениями троса нецелесообразна из-за высокой вероятности обратных перекрытий молнии с троса на защищаемый объект. По экономическим соображениям замкнутые тросовые молниеотводы не рекомендуются, когда требуемая надежность защиты меньше 0,99.

3. КОНСТРУКЦИИ МОЛНИЕОТВОДОВ

3.1. Опоры стержневых молниеотводов должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов — с учетом натяжения троса и действия на него ветровой и гололедной нагрузок.

3.2. Опоры отдельно стоящих молниеотводов могут выполняться из стали любой марки, железобетона или дерева.

3.3. Стержневые молниеприемники должны быть изготовлены из стали любой марки сечением не менее 100 мм2 и длиной не менее 200 мм и защищены от коррозии оцинкованием, лужением или окраской.

Тросовые молниеприемники должны быть выполнены из стальных многопроволочных канатов сечением не менее 35 мм2 .

3.4. Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться, как правило, сваркой, а при недопустимости огневых работ разрешается выполнение болтовых соединений с переходным сопротивлением не более 0,05 Ом при обязательном ежегодном контроле последнего перед началом грозовогосезона.

3.5. Токоотводы, соединяющие молниеприемники всех видов с заземлителями, следует выполнять из стали размерами не менее указанных в табл. 3.

3.6. При установке молниеотводов на защищаемом объекте и невозможности использования в качестве токоотводов металлических конструкций здания (см. п. 2.12) токоотводы должны быть проложены к заземлителям по наружным стенам здания кратчайшими путями.

3.7. Допускается использование любых конструкций железобетонных фундаментов зданий и сооружений (свайных, ленточных и т.п.) в качестве естественных заземлителей молниезащиты (с учетом требований п. 1.8).

Допустимые размеры одиночных конструкций железобетонных фундаментов, используемых в качестве заземлителей, приведены в табл. 2.

3.8. Рекомендуемые конструкции и размеры сосредоточенных искусственных заземлителей приведены в табл. 2. Минимально допустимые сечения (диаметры) электродов искусственных заземлителей нормированы в табл. 3.

ОСНОВНЫЕ ТЕРМИНЫ

1. Прямой удар молнии (поражение молнией) — непосредственный контакт канала молнии с зданием или сооружением, сопровождающийся протеканием через него тока молнии.

2. Вторичное проявление молнии — наведение потенциалов на металлических элементах конструкции, оборудования, в незамкнутых металлических контурах, вызванное близкими разрядами молнии и создающее опасность искрения внутри защищаемого объекта.

3. Занос высокого потенциала — перенесение в защищаемое здание или сооружение по протяженным металлическим коммуникациям (подземным, наземным и надземным трубопроводам, кабелям и т.п.) электрических потенциалов, возникающих при прямых и близких ударах молнии и создающих опасность искрения внутри защищаемого объекта.

Предлагаем ознакомиться  Болезни и вредители роз, средства борьбы

4. Молниеотвод — устройство, воспринимающее удар молнии и отводящее ее ток в землю.

В общем случае молниеотвод состоит из опоры; молниеприемника, непосредственно воспринимающего удар молнии; токоотвода, по которому ток молнии передается в землю; заземлителя, обеспечивающего растекание тока молнии в земле.

В некоторых случаях функции опоры, молниеприемника и токоотвода совмещаются, например при использовании в качестве молниеотвода металлических труб или ферм.

5. Зона защиты молниеотвода — пространство, внутри которого здание или сооружение защищено от прямых ударов молнии с надежностью не ниже определенного значения. Наименьшей и постоянной надежностью обладает поверхность зоны защиты; в глубине зоны защиты надежность выше, чем на ее поверхности.

Зона защиты типа А обладает надежностью 99,5% и выше, а тина Б — 95 % и выше.

стержневые — с вертикальным расположением молниеприемника;

тросовые (протяженные) — с горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах;

сетки — многократные горизонтальные молниеприемники, пересекающиеся под прямым углом и укладываемые на защищаемого объекта.

7. Отдельно стоящие молниеотводы — это те, опоры которых установлены на земле на некотором удалении от защищаемого объекта.

8. Одиночный молниеотвод — это единичная конструкция стержневого или тросового молниеотвода.

9. Двойной (многократный) молниеотвод — это два (или более) стержневых или тросовых молниеотвода, образующих общую зону защиты.

10. Заземлитель молниезащиты — один или несколько заглубленных в землю проводников, предназначенных для отвода в землю токов молнии или ограничения перенапряжений, возникающих на металлических корпусах, оборудовании, коммуникациях при близких разрядах молнии. Заземлители делятся на естественные и искусственные.

11. Естественные заземлители — заглубленные в землю металлические и железобетонные конструкции зданий и сооружений.

12. Искусственные заземлители — специально проложенные в земле контуры из полосовой или круглой стали; сосредоточенные конструкции, состоящие из вертикальных и горизонтальных проводников.

1. КРАТКИЕ СВЕДЕНИЯ О РАЗРЯДАХ МОЛНИИ И ИХ ПАРАМЕТРАХ

Молния представляет собой электрический разряд длиной в несколько километров, развивающийся между грозовым облаком и землей или каким-либо наземным сооружением.

Разряд молнии начинается с развития лидера — слабо светящегося канала с током в несколько сотен ампер. По направлению движения лидера — от облака вниз или от наземного сооружения вверх — молнии разделяются на нисходящие и восходящие. Данные о нисходящих молниях накапливались продолжительное время в нескольких регионах земного шара.

Лидер нисходящей молнии возникает под действием процессов в грозовом облаке, и его появление не зависит от наличия на поверхности земли каких-либо сооружений. По мере продвижения лидера к земле с наземных объектов могут возбуждаться направленные к облаку встречные лидеры. Соприкосновение одного из них с нисходящим лидером (или касание последнего поверхности земли) определяет место удара молнии в землю или какой-либо объект.

Восходящие лидеры возбуждаются с высоких заземленных сооружений, у вершин которых электрическое поле во время грозы резко усиливается. Сам факт появления и устойчивого развития восходящего лидера определяет место поражения. На равнинной местности восходящие молнии поражают объекты высотой более 150 м, а в горных районах возбуждаются с остроконечных элементов рельефа и сооружении меньшей высоты и потому наблюдаются чаще.

Рассмотрим сначала процесс развития и параметры нисходящей молнии. После установления сквозного лидерного канала следует главная стадия разряда — быстрая нейтрализация зарядов лидера, сопровождающаяся ярким свечением и нарастанием тока до пиковых значений, варьирующихся от единиц до сотен килоампер.

При этом происходит интенсивный разогрев канала (до десятков тысяч кельвин) и его ударное расширение, воспринимаемое на слух как раскат грома. Ток главной стадии состоит из одного или нескольких последовательных импульсов, наложенных на непрерывную составляющую. Большинство импульсов тока имеет отрицательную полярность.

Ток непрерывной составляющей нисходящей молнии варьируется от единиц до сотен ампер и существует на протяжении всей вспышки, продолжающейся в среднем 0,2 с, а в редких случаях 1—1,5 с.

Заряд, переносимый в течение всей вспышки молнии, колеблется от единиц до сотен кулон, из которых на долю отдельных импульсов приходится 5-15, а на непрерывную составляющую 10-20 Кл.

Нисходящие молнии с положительными импульсами тока наблюдаются примерно в 10% случаев. Часть из них имеет форму, аналогичную форме отрицательных импульсов. Кроме того, зарегистрированы положительные импульсы с существенно большими параметрами: длительностью около 1000 мкс, длиной фронта около 100 мкс и переносимым зарядом в среднем 35 Кл. Для них характерны вариации амплитуд тока в очень широких пределах: при среднем токе 35 кА в 1—2% случаев возможно появление амплитуд свыше 500 кА.

Накопленные фактические данные о параметрах нисходящих молний не позволяют судить об их различиях в разных географических регионах. Поэтому для всей территории СССР их вероятностные характеристики приняты одинаковыми

Восходящая молния развивается следующим образом. После того как восходящий лидер достиг грозового облака, начинается процесс разряда, сопровождающийся примерно в 80% случаев токами отрицательной полярности. Наблюдаются токи двух типов: первый — непрерывный безымпульсный до нескольких сотен ампер и длительностью в десятые доли секунды, переносящий заряд 2—20 Кл;

второй характеризуется наложением на длительную безымпульсную составляющую коротких импульсов, амплитуда которых в среднем составляет 10—12 кА и лишь в 5 % случаев превышает 30 кА, а переносимый заряд достигает 40 Кл. Эти импульсы сходны с последующими импульсами главной стадии нисходящей отрицательной молнии.

В горной местности восходящие молнии характеризуются более длительными непрерывными токами и большими переносимыми зарядами, чем на равнине. В то же время вариации импульсных составляющих тока в горах и на равнине отличаются мало. На сегодняшний день не выявлена связь между токами восходящей молнии и высотой сооружений, с которых они возбуждаются. Поэтому параметры восходящих молний и их вариации оцениваются как одинаковые для любых географических регионов и высот объектов.

В РД 34.21.122—87 данные о параметрах токов молнии учтены в требованиях к конструкциям и размерам средств молниезащиты. Например, минимально допустимые расстояния от молниеотводов и их заземлителей до объектов I категории (пп. 2.3—2.5 *) определены из условия поражения молниеотводов нисходящими молниями с амплитудой и крутизной фронта тока в пределах соответственно 100 кА и 50 кА/мкс. Этому условию соответствует не менее 99% случаев поражения нисходящими молниями.

* Здесь и далее пункты РД 34.21.122-87.

3. КОЛИЧЕСТВО ПОРАЖЕНИЙ МОЛНИЕЙ НАЗЕМНЫХ СООРУЖЕНИЙ

Согласно требованиям табл. 1 РД 34.21.122—87 для ряда объектов ожидаемое количество поражений молнией является показателем, определяющим необходимость выполнения молниезащиты и ее надежность. Поэтому нужно располагать способом оценки этого значения еще на стадии проектирования объекта. Желательно, чтобы этот способ учитывал известные характеристики грозовой деятельности и другие сведения о молнии.

При подсчете числа поражений нисходящими молниями используется следующее представление: возвышающийся объект принимает на себя разряды, которые в его отсутствие поразили бы поверхность земли определенной площади (так называемую поверхность стягивания). Эта площадь имеет форму круга для сосредоточенного объекта (вертикальной трубы или башни) и форму прямоугольника для протяженного объекта, например, воздушной линии электропередачи.

где R0 — радиус стягивания; n — среднегодовое число ударов молнии в 1 км2 земной поверхности. Для протяженного объекта длиной l

Имеющаяся статистика поражений объектов разной высоты в местностях с разной продолжительностью гроз позволила ориентировочно определить связь между радиусом стягивания R0 и высотой объекта h. Несмотря на значительный разброс,в среднем можно принять R0 = 3h.

Приведенные соотношения положены в основу формул расчета ожидаемого количества поражений молнией сосредоточенных объектов и объектов с заданными габаритами в приложении 2 РД 34.21.122—87. Грозопоражаемость объектов ставится в прямую зависимость от плотности разрядов молнии в землю и соответственно от региональной продолжительности гроз в соответствии с данными приложения 2.

Можно предположить, что вероятность поражения объекта растет, например с ростом амплитуды тока молнии, и зависит от других параметров разряда. Однако имеющаяся статистика поражений получена способами (фотографированием ударов молнии, регистрацией специальными счетчиками), не позволяющими выделить влияние других факторов, кроме интенсивности грозовой деятельности.

Оценим теперь по формулам приложения 2, как часто возможны поражения молнией объектов разных размеров и формы. Например, при средней продолжительности гроз 40—60 ч в год в сосредоточенный объект высотой 50 м (например, дымовую трубу) можно ожидать не более одного поражения за 3—4 года, а в здание высотой 20 м и размерами в плане 100х100 м (типичное по габаритам для многих видов производства) — не более одного поражения за 5 лет.

Таким образом, при умеренных размерах зданий и сооружений (высоте в пределах 20—50 м, длине и ширине примерно 100 м) поражение молнией является редким событием. Для небольших строений (с габаритами примерно 10 м) ожидаемое количество поражений молнией редко превышает 0,02 за год, а это значит, что за весь срок их службы может произойти не более одного удара молнии.

Для сосредоточенных объектов число поражений нисходящими молниями растет в квадратичной зависимости от высоты и в районах с умеренной продолжительностью гроз при высоте объектов около 150 м составляет один-два удара за год. С сосредоточенных объектов большей высоты возбуждаются восходящие молнии, количество которых также пропорционально квадрату высоты.

Такое представление о поражаемости высоких объектов подтверждают наблюдения, проводимые на Останкинской телевизионной башне высотой 540 м: ежегодно в нее происходит около 30 ударов молнии и более 90% из них приходится на восходящие разряды, число поражений нисходящими молниями сохраняется на уровне одного-двух в год. Таким образом, для сосредоточенных объектов высотой более 150 м количество поражений нисходящими молниями мало зависит от высоты.

4. ОПАСНЫЕ ВОЗДЕЙСТВИЯ МОЛНИИ

первичные, вызванные прямым ударом молнии, и вторичные, индуцированные близкими ее разрядами или занесенные в объект протяженными металлическими коммуникациями. Опасность прямого удара и вторичных воздействий молнии для зданий и сооружений и находящихся в них людей или животных определяется, с одной стороны, параметрами разряда молнии, а с другой — технологическими и конструктивными характеристиками объекта (наличием вэрыво- или пожароопасных зон, огнестойкостью строительных конструкций, видом вводимых коммуникаций, их расположением внутри объекта и т. д.).

Прямой удар молнии вызывает следующие воздействия на объект: электрические, связанные с поражением людей или животных электрическим током и появлением перенапряжении на пораженных элементах. Перенапряжение пропорционально амплитуде и крутизне тока молнии, индуктивности конструкций и сопротивлению заземлителей, по которым ток молнии отводится в землю.

Даже при выполнении молниезащиты прямые удары молния с большими токами и крутизной могут привести к перенапряжениям в несколько мегавольт. При отсутствии молниезащиты пути растекания тока молнии неконтролируемы и ее удар может создать опасность поражения током, опасные напряжения шага и прикосновения, перекрытия на другие объекты;

термические, связанные с резким выделением теплоты при прямом контакте канала молнии с содержимым объекта и при протекании через объект тока молнии. Выделяемая в канале молнии энергия определяется переносимым зарядом, длительностью вспышки и амплитудой тока молнии; и 95% случаев разрядов молнии эта энергия (в расчете на сопротивление 1 Ом) превышает 5,5 Дж, она на два-три порядка превышает минимальную энергию воспламенения большинства газо-, паро- и пылевоздушных смесей, используемых в промышленности.

Следовательно, в таких средах контакт с каналом молнии всегда создает опасность воспламенения (а в некоторых случаях взрыва), то же относится к случаям проплавления каналом молнии корпусов взрывоопасных наружных установок. При протекании тока молнии по тонким проводникам создается опасность их расплавления и разрыва;

механические, обусловленные ударной волной, распространяющейся от канала молнии, и электродинамическими силами, действующими на проводники с токами молнии. Это воздействие может быть причиной, например, сплющивания тонких металлических трубок. Контакт с каналом молнии может вызвать резкое паро- или газообразование в некоторых материалах с последующим механическим разрушением, например, расщеплением древесины или образованием трещин в бетоне.

Вторичные проявления молнии связаны с действием на объект электромагнитного ноля близких разрядов. Обычно это поле рассматривают в виде двух составляющих: первая обусловлена перемещением зарядов в лидере и канале молнии, вторая — изменением тока молнии во времени. Эти составляющие иногда называют электростатической и электромагнитной индукцией.

Электростатическая индукция проявляется в виде перенапряжения, возникающего на металлических конструкциях объекта и зависящего от тока молнии, расстояния до места удара и сопротивления заземлителя. При отсутствии надлежащего заземлителя перенапряжение может достигать сотен киловольт и создавать опасность поражения людей и перекрытий между разными частями объекта.

Электромагнитная индукция связана с образованием в металлических контурах ЭДС, пропорциональной крутизне тока молнии и площади, охватываемой контуром. Протяженные коммуникации в современных производственных зданиях могут образовывать охватывающие большую площадь контуры, в которых возможно наведение ЭДС в несколько десятков киловольт.

Еще одним видом опасного воздействия молнии является занос высокого потенциала по вводимым в объект коммуникациям (проводам воздушных линий электропередачи, кабелям, трубопроводам). Он представляет собой перенапряжение, возникающее на коммуникации при прямых и близких ударах молнии и распространяющееся в виде набегающей на объект волны.

9. ПРИМЕРЫ ИСПОЛНЕНИЯ МОЛНИЕЗАЩИТЫ РАЗЛИЧНЫХ ОБЪЕКТОВ* (РИС. П4.2-П4.Э)

Тяжесть последствий удара молнии зависит прежде всего от взрыво- или пожароопасности здания или сооружения при термических воздействиях молнии, а также искрениях и перекрытиях, вызванных другими видами воздействий. Например в производствах, постоянно связанных с открытым огнем, процессами горения, применением несгораемых материалов и конструкции, протекание тока молнии не представляет большой опасности. Напротив, наличие внутри объекта взрывоопасной среды создаст угрозу разрушений, человеческих жертв, больших материальных ущербов.

При таком разнообразии технологических условий предъявлять одинаковые требования к молниезащите всех объектов означало бы или вкладывать в ее выполните чрезмерные запасы, или мириться с неизбежностью значительных ущербов, вызванных молнией. Поэтому в РД 34.21.122-87 принят дифференцированный подход к выполнению молниезащиты различных объектов, в связи с чем в табл. 1 этой Инструкции здания и сооружения разделены на три категории, отличающиеся по тяжести возможных последствий поражения молнией.

К I категории отнесены производственные помещения, в которых в нормальных технологических режимах могут находиться и образовываться взрывоопасные концентрации газов, паров, пылей, волокон. Любое поражение молнией, вызывая взрыв, создает повышенную опасность разрушений и жертв не только для данного объекта, но и для близрасположенных

Во II категорию попадают производственные здания и сооружения, в которых появление взрывоопасной концентрации происходит в результате нарушения нормального технологического режима, а также наружные установки, содержащие взрывоопасные жидкости и газы. Для этих объектов удар молнии создает опасность взрыва только при совпадении с технологической аварией или срабатыванием дыхательных или аварийных клапанов на наружных установках. Благодаря умеренной продолжительности гроз на территории СССР вероятность совпадения этих событий достаточно мала.

К III категории отнесены объекты, последствия поражения которых связаны с меньшим материальным ущербом, чем при взрывоопасной среде. Сюда входят здания и сооружения с пожароопасными помещениями или строительными конструкциями низкой огнестойкости, причем для них требования к молниезащите ужесточаются с увеличением вероятности поражения объекта (ожидаемого количества поражений молнией) .

Кроме того, к III категории отнесены объекты, поражение которых представляет опасность электрического воздействия на людей и животных: большие общественные здания, животноводческие строения, высокие сооружения типа труб, башен, монументов. Наконец, к III категории отнесены мелкие строения в сельской местности, где чаще всего используются сгораемые конструкции.

1 — граница зоны защиты; 2 — заземлители-подножники фундамента; 3 — зона защиты на отметке 8,0 м

1 — трос; 2 — граница зоны защиты; 3 — ввод подземного трубопровода; 4 — граница распространения взрывоопасной концентрации; 5 — соединения арматуры, выполняемые сваркой; 6 — железобетонный фундамент; 7 — закладные элементы для присоединения оборудования; 8 — заземляющий проводник из стали 4×40 мм; 9 — заземлители — железобетонные подножники; 10 — граница зоны защиты на отметке 10,5

1 — молниеприемная сетка; 2 — гидроизоляция здания; 3 — опора здания; 4 — стальная перемычка; 5 — арматура колонны; 6 — заземлители, железобетонные фундаменты; 7 — закладная деталь; 8 — опора эстакады; 9 - технологическая эстакада

1 — арматура колонны; 2 — арматура фундамента; 3 — заземлитель; 4 — стальная ферма; 5 — железобетонная колонна; 6 — анкерные болты, привариваемые к арматуре; 7 — закладная деталь

Условные обозначения: — стержневой молниеотвод (№ 1-6); —.—.—.- токоотводящая металлическая полоса; — газоотводные трубы для отвода в атмосферу газов невзрывоопасной концентрации; — то же взрывоопасной концентрации

1 — дыхательный клапан; 2 — область выброса газов взрывоопасной концентрации; 3 — граница зоны защиты; 4 — зона защиты на высоте hx = 23,7 м; 5 - то же на высоте hx=22,76 м

1 — клапан аварийного выброса газов; 2, 3 - то же, что на рис. 4.7; 4 - понтон; 5 — зона защиты на высоте hх = 23 м; 6 - гибкий кабель

1 — тросовый молниеприемник; 2 — ввод воздушной линии электропередачи (ВЛ) и заземление крюков ВЛ на стене; 3 — токоотвод; 4 — заземлитель

8. ПОДХОД К НОРМИРОВАНИЮ ЗАЗЕМЛИТЕЛЕЙ МОЛНИЕЗАЩИТЫ

Одним из эффективных способов ограничения грозовых перенапряжений в цепи молниеотвода, а также на металлических конструкциях и оборудовании объекта является обеспечение низких сопротивлений заземлителей. Поэтому при выборе молниезащиты нормированию подлежит сопротивление заземлителя или другие его характеристики, связанные с сопротивлением.

До недавнего времени для заземлителей молниезащиты нормировалось импульсное сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом для зданий и сооружений I и II категорий и 20 Ом для зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельным сопротивлением более 500 Ом·м при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для наружных установок максимально допустимое импульсное сопротивление заземлителей было принято равным 50 Ом.

Импульсное сопротивление заземлителя является количественной характеристикой сложных физических процессов при растекании в земле токов молнии. Его значение отличается от сопротивления заземлителя при растекании токов промышленной частоты и зависит от нескольких параметров тока молнии (амплитуды, крутизны, длины фронта), варьирующихся в широких пределах.

При проектировании заземлителя нельзя предсказать значения токов молнии, которые будут через него растекаться, а следовательно, невозможно оценить наперед соответствующие значения импульсных сопротивлений. В этих условиях нормирование заземлителей по их импульсному сопротивлению имеет очевидные неудобства.

Такое нормирование было принято в пп. 2.2, 2.13, 2.26, табл. 2: для ряда типовых конструкций были подсчитаны импульсные сопротивления при колебаниях токов молнии от 5 до 100 кА и по результатам расчетов проведен отбор заземлителей, удовлетворяющих принятому условию.

В настоящее время распространенными и рекомендуемыми (РД 34.21.122-87, п. 1.8) конструкциями заземлителей являются железобетонные фундаменты. К ним предъявляется дополнительное требование — исключение механических разрушений бетона при растекании через фундамент токов молнии. Железобетонные конструкции выдерживают большие плотности растекающихся по арматуре токов молнии, что связано с кратковременностью этого растекания.

https://www.youtube.com/watch?v=ytpressru

Единичные железобетонные фундаменты (сваи длиной не менее 5 или подножники длиной не менее 2 м) способны без разрушения выдерживать токи молнии до 100 кА, по этому условию в табл. 2 РД 34.21.122-87 заданы допустимые размеры единичных железобетонных заземлителей. Для фундаментов больших размеров с соответственно большей поверхностью арматуры опасная для разрушения бетона плотность тока маловероятна при любых возможных токах молнии.

Нормирование параметров заземлителей по их типовым конструкциям имеет ряд достоинств: оно соответствует принятой в строительной практике унификации железобетонных фундаментов с учетом их повсеместного использования в качестве естественных заземлителей при выборе молниезащиты не требуется выполнять расчеты импульсных сопротивлений заземлителей, что сокращает объем проектных работ.

,
Поделиться
Похожие записи
Комментарии:
Комментариев еще нет. Будь первым!
Имя
Укажите своё имя и фамилию
E-mail
Без СПАМа, обещаем
Текст сообщения
Adblock detector